
Efficiency and Applications of

SAT-Based Test Pattern Generation

— Complex fault models and optimisation problems —

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.)
der Technischen Fakultät

der Albert-Ludwigs-Universität
in Freiburg im Breisgau

vorgelegt von

Alexander Czutro,
geb. Yánez-Trujillo

im Juni 2013

Alexander Czutro - Albert-Ludwigs-Universität Freiburg

Dekan der Fakultät:

Prof. Dr. Yiannos Manoli

Gutachter:

Prof. Dr. Bernd Becker

Albert-Ludwigs-Universität Freiburg
Freiburg im Breisgau

Prof. Sudhakar M. Reddy

University of Iowa
Iowa City, IA, USA

Datum der Promotion:

12. August 2013

Acknowledgements

First of all, thanks to the adviser of this thesis, Prof. Dr. Bernd Becker, for all the support, help
and encouragement I have received fromhimover the course ofmany years, and also for having
introduced me to the world of scienti&c research at a very early stage of my undergraduate
studies, which has signi&cantly shaped my life in a positive way. And in particular, for giving
me the opportunity to present my work at numerous symposia and workshops, thus allowing
me to obtain valuable feedback from a large, international community of researchers.

Very special thanks to Prof. Sudhakar M. Reddy (University of Iowa) for the helpful tips that
he provided in multiple occasions, and in general, for his ever-present willingness to share his
vast knowledge.

Mywork would not have been possible without the help of fellow doctoral students in Freiburg:
Dr.Matthew Lewis, Dr. Piet Engelke andDr. Tobias Schubert, who provided the fault simulator
and the SAT solvers that I integrated intomyATPG frameworkTiguan. In particular, thanks to
Matt and Piet, who spent a lot of time optimising their tools and implementing customisations
during the initial stage of my doctoral research. Also, thanks to Dr. Stefan Hillebrecht and to
Mr. Matthias Sauer for numerous technical discussions.

'anks also to several people for their cooperation in di*erent works: Prof. Sandip Kundu
(University of Massachusetts), Prof. Michel Renovell and Prof. Mariane Comte (Laboratoire
d’Informatique, de Robotique et de Microélectronique de Montpellier), Prof. Dr. Sybille Helle-
brand (University of Paderborn), Prof. Dr. Hans-JoachimWunderlich (University of Stuttgart),
Dr.WolfgangVermeiren (Fraunhofer Institute for IntegratedCircuits, Dresden); and toMr. Jür-
gen Schlö*el (Mentor Graphics, formerly NXP Semiconductors GmbH, Hamburg) for provid-
ing industrial benchmarks.

Really big thanks to Mr. Peter Winterer, Prof. Becker’s system administrator, for taking care
of a great deal of computing infrastructure that we students, immersed in the daily grind of
doctoral research, sometimes take for granted; and for always being an attentive listener and
an obliging colleague.

Finally, my greatest debts. To my former Freiburg colleague, Prof. Dr. Ilia Polian (University
of Passau), for his guidance and patience teaching me innumerable skills over a period of ten
years; and for proofreading this manuscript at such short notice. And to my wife Kinga, whom
I owe everything else in life.

Alexander Czutro

iii

ACKNOWLEDGEMENTS

iv

Abstract

Modern technologies have enabled the semiconductor industry to enter a new
era of integrated-circuit manufacturing. Modern ICs are not only smaller and
signi&cantly more high-performing than they used to be only a few years ago; they
are also considerably more energy-e2cient thanks to the use of new materials with
convenient electric properties. However, the use of new materials is also making
the fabrication process more di2cult to control, and the new chips are more prone
to defects. In consequence, the role of fault models that allow to describe complex
forms of faulty behaviour is becoming increasingly important in hardware test and
diagnosis.

Without doubt, automatic test pattern generation (ATPG) is the most important
test task. ATPG algorithms need to be not only run-time-e2cient and to produce
compact test sets, given the large number of faults that need to be targeted in multi-
billion-transistor ICs; they also need to keep pace with the development of new
mechanisms for the description of faulty behaviour.

Traditionally, ATPG algorithms used in industrial applications are structural, i.e.
their reasoning is based on the circuit’s structure. However, SAT-based algorithms,
i.e. methods that map the ATPG problem to the problem of Boolean satis&ability
(SAT), have recently started to gain relevance because they perform better than
structural methods on important classes of faults.

'is doctoral thesis covers the work on SAT-based test pattern generation per-
formed by the thesis’s author between 2008 and 2012. It presents the SAT-based
ATPG tool Tiguan and explains in detail all important aspects that were considered
in order to make Tiguan a highly e2cient test pattern generator capable of calculat-
ing provably optimal solutions for complex ATPG problems. 'e most important
contributions of the work presented in this thesis can be summarised as follows:

▸ 'e general run-time e2ciency of SAT-based ATPG was increased through
intelligent mapping of the ATPG problem to SAT, through the optimal utilisa-

v

ABSTRACT

tion of multiple computing cores, and through the employment of advanced
SAT solving techniques.

▸ Dynamic compaction was integrated into SAT-based ATPG. 'is allowed
Tiguan to test all stuck-at faults in iscas and itc’99 circuits using less test
patterns than a commercial, structural tool. Regarding the application to
industrial circuits, the compaction e2ciency gap between SAT-based and
structural ATPG was signi&cantly diminished.

▸ Generic fault models were de&ned which allow to represent complex defect
behaviour. In addition, a 5exible SAT-based framework for the generation
of provably optimal test patterns for complex fault models was implemen-
ted. 'e applicability of the framework was illustrated by several example
applications whose replication using structural methods is not trivial.

▸ 'e performed research and the created so6ware code base opened the path
to advanced research in small-delay test, variability and fault tolerance.

Each chapter of the thesis focuses on one key aspect, provides a thoroughmotivation
for the work on that aspect, discusses all relevant algorithmic details, presents and
analyses extensive experimental results, and points out important directions for
future research. To conclude, the thesis reviews selected works by other authors
which have bene&ted from Tiguan’s development.

Finally, a6er a brief summary of the presented topics, the thesis closes with a dis-
cussion of the role that SAT-based ATPG is expected to play in future industrial
applications.

vi

Zusammenfassung

Dank moderner Technologien be&ndet sich die Halbleiterindustrie in einer neuen
Ära der Herstellung von integrierten Schaltungen (integrated circuits— IC). Mo-
derne ICs sind nicht nur kleiner und deutlich performanter als vor nur wenigen
Jahren; sie sind dank des Einsatzes neuer Werksto*e mit günstigen elektrischen
Eigenscha6en auch wesentlich energiee2zienter geworden. Allerdings ist das Her-
stellungsverfahren durch die Verwendung von neuenWerksto*en auch schwieriger
steuerbar geworden, was zur Folge hat, dass die neuen Chips defektanfälliger sind.
Vor diesem Hintergrund ist in der Hardwaretest-Forschung insbesondere die Rolle
von Fehlermodellen, mit denen komplexe Formen von Fehlverhalten beschrieben
werden können, zunehmend wichtiger geworden.

Ohne Zweifel ist die automatische Testmustererzeugung (automatic test pattern gen-
eration—ATPG) die wichtigste Testaufgabe. ATPG-Algorithmenmüssen nicht nur
laufzeite2zient sein und kompakte Testmengen erzeugen, angesichts der großen
Zahl von Fehlern, die in ICs mit mittlerweile mehreren Milliarden Transistoren
betrachten werden müssen. Sie müssen auch mit der Entwicklung neuer Verfahren
für die Beschreibung von Fehlverhalten Schritt halten.

Traditionell sind die ATPG-Algorithmen, die in industriellen Anwendungen einge-
setzt werden, strukturell. Das heißt, ihr Suchverhalten wird von der Schaltungs-
struktur diktiert. Allerdings haben vor relativ kurzer Zeit auch SAT-basierte Al-
gorithmen angefangen, an Bedeutung zuzunehmen, da sie bei Anwendung auf
bestimmte, wichtige Klassen von Fehlern eine bessere Leistung als strukturelle
Methoden erbringen. SAT-basiert bedeutet, dass diese Methoden das ATPG-Pro-
blem auf das Problem der Boolschen Erfüllbarkeit (Boolean satis!ability— SAT)
reduzieren.

Diese Dissertation umfasst die Arbeit, die der Autor im Forschungsbereich der
SAT-basierten Testmustererzeugung zwischen 2008 und 2012 geleistet hat. Die
Arbeit stellt das SAT-basierte ATPG-Werkzeug Tiguan vor und erklärt im Detail
alle wichtigen Aspekte, die berücksichtigt werden mussten, um aus Tiguan ein

vii

ZUSAMMENFASSUNG

hoche2zientes Testmustererzeugungswerkzeug zu machen, das in der Lage ist,
beweisbar optimale Lösungen für komplexe ATPG-Probleme zu berechnen. Die
wichtigsten Beiträge der in dieser Dissertation vorgestellten Arbeit können wie folgt
zusammengefasst werden:

▸ Die allgemeine Laufzeite2zienz von SAT-basiertem ATPG wurde durch
die geeignete Abbildung des ATPG-Problems auf SAT, durch die optimale
Nutzungmehrerer Rechenkerne, unddurch denEinsatz von fortgeschrittenen
SAT-Techniken verbessert.

▸ Ein Verfahren zur dynamischen Kompaktierung wurde in den SAT-basierten
ATPG-Algorithmus integriert. Dies ermöglicht Tiguan, alle Stuck-at-Fehler
in iscas- und itc’99-Schaltungen mit weniger Testmustern zu testen als
ein kommerzielles strukturelles ATPG-Werkzeug. Was die Anwendung auf
industrielle Schaltungen betri8, so wurde die Klu6, die es zwischen SAT-
basierten und strukturellen Methoden hinsichtlich der Testmengenkompakt-
heit gab, deutlich verkleinert.

▸ Generische Fehlermodelle wurden de&niert, mit deren Hilfe sich komplexes
Defektverhalten darstellen lässt. Darüber hinaus ist ein 5exibles SAT-basiertes
Werkzeug entstanden, mit dem die Erzeugung von beweisbar optimalen Test-
mustern für komplexe Fehlermodelle möglich ist. Die Anwendbarkeit des
Konzeptes wurde anhand von mehreren Beispielanwendungen bewiesen, die
sich mit strukturellen Methoden schwer realisieren lassen.

▸ Die durchgeführte Forschung und die entstandene So6ware-Codebasis er-
ö*neten denWeg für weitere Forschung über Verzögerungsfehler, Variabilität
und Fehlertoleranz.

Jedes Kapitel der Dissertation konzentriert sich auf einen zentralen Aspekt. Es bietet
dabei eine gründliche Motivation für die realisierte Arbeit, erklärt alle relevanten
algorithmischen Details, präsentiert und analysiert umfangreiche experimentelle
Ergebnisse und erarbeitet Ideen für zukün6ige Forschung. Am Ende der Arbeit
werden ausgewählte Werke von anderen Autoren kurz vorgestellt, die von der Ent-
wicklung von Tiguan pro&tiert haben.

Nach einer kurzen Zusammenfassung der vorgestellten 'emen widmet sich die
Arbeit schließlich einer Diskussion über die Rolle, die man von der SAT-basierten
Testmustererzeugung in zukün6igen industriellen Anwendungen erwarten darf.

viii

Contents

1 Preface 1

2 Introduction to the test of digital circuits 11

2.1 'e Boolean algebra . 11

2.2 Circuits . 12

2.2.1 Modelling levels . 12

2.2.2 Gate-level net lists . 14

2.2.3 Sequential circuits . 18

2.3 Fault models . 21

2.3.1 Defects, faults and errors . 21

2.3.2 'e stuck-at fault model . 22

2.3.3 Delay fault modelling . 22

2.4 Test application and fault coverage 23

2.4.1 De&nitions . 23

2.4.2 Test application . 25

2.4.3 Two-pattern testing . 26

2.5 Resistive fault models . 29

2.6 Fault simulation . 32

2.7 Test pattern generation . 34

2.7.1 Structural test pattern generation for stuck-at faults 35

2.7.2 Compaction . 40

ix

CONTENTS

3 Introduction to the SAT problem and to SAT-based ATPG 45

3.1 Introduction . 45

3.2 Formal de&nition of the SAT problem 47

3.3 SAT solving algorithms . 49

3.3.1 'e DPLL-Algorithm . 49

3.3.2 Modern SAT solvers . 52

3.3.3 Incremental SAT solving . 55

3.3.4 SAT solving with qualitative preferences 55

3.4 'e principle of SAT-based ATPG 57

3.5 Previous and related work . 60

4 &e SAT-based test pattern generator Tiguan 63

4.1 Introduction . 64

4.2 'e CMS@ fault model . 67

4.2.1 De&nition . 67

4.2.2 Example application to gate-exhaustive testing 68

4.3 Tiguan— overview . 69

4.4 Generation of SAT formulae . 70

4.5 Post-processing . 75

4.6 Evaluation of Tiguan’s performance 78

4.6.1 Stuck-at faults . 78

4.6.2 CMS@ faults with non-empty aggressor sets 89

4.7 Conclusions . 94

5 Optimising the run-time of SAT-based ATPG 95

5.1 SAT-ATPG with thread-parallel SAT solving 96

5.1.1 'e SAT solving back-end MiraXT 97

5.1.2 Performance of Tiguan on multi-core architectures 101

x

CONTENTS

5.2 SAT-ATPG with incremental SAT solving 109

5.2.1 'e SAT solving back-end antom 109

5.2.2 Fault clustering . 111

5.2.3 Experimental evaluation . 115

5.3 Conclusions . 120

6 SAT-based ATPG with dynamic compaction 123

6.1 Introduction . 124

6.2 'e dynamic compaction procedure 126

6.3 Experimental evaluation . 131

6.4 Enhanced dynamic compaction . 138

6.5 Conclusions . 149

7 Complex fault models and optimisation problems 153

7.1 Introduction . 154

7.2 CMS@-based SAT-ATPG for resistive-bridging faults 155

7.3 'e ECMS@ fault model . 162

7.4 Implementation of ECMS@-based SAT-ATPG 164

7.4.1 Maximisation and minimisation of ω 165

7.4.2 Forcing ω to lie between application-speci&c bounds . . . 167

7.4.3 Controlling the parity of ω 168

7.5 Advanced applications of the ECMS@FM 168

7.5.1 Controlling the amount of fault-a*ected POs 168

7.5.2 SAT-ATPG with control of switching activity 171

7.6 Conclusions . 176

xi

CONTENTS

8 Power droop testing 179

8.1 Introduction . 180

8.2 Power droop testing . 182

8.3 Mapping to ECMS@-based SAT-ATPG 185

8.4 Experimental evaluation . 188

8.4.1 Comparison to structural ATPG 188

8.4.2 Evaluation of strategies for the selection of control lines . . 190

8.5 Conclusions . 194

9 Applications to process variations and fault tolerance 195

9.1 Introduction . 196

9.2 'e Tiguan library . 197

9.3 Grading of strong fault secureness 200

9.4 Optimisation of the KLPG-Algorithm 203

9.5 Conclusions . 207

10 Summary and concluding remarks 209

A Benchmark details 219

Author’s publications 223

Bibliography 227

xii

List of Algorithms

1 Simple fault simulation . 33

2 'e D-Algorithm . 36

3 Sub-routines of the D-Algorithm . 38

4 'e DPLL-Algorithm . 51

5 SAT-based ATPG with dynamic compaction 127

6 Enhanced dynamic compaction for SAT-ATPG 139

xiii

LIST OF ALGORITHMS

xiv

List of Figures

1 Truth table of a half-adder . 12

2 Gate types . 15

3 Gate-level half-adder . 17

4 Cones of in5uence . 17

5 A two-input multiplexer . 18

6 Example sequential circuit . 19

7 Sequential expansion . 20

8 Test application . 25

9 Scan design . 28

10 Analogue detectability intervals of resistive bridging faults 30

11 D-Algorithm— an example chain of implications 37

12 Miter construction and conversion into a SAT formula 58

13 Larrabee’s miter . 59

14 Tiguan— 5ow . 69

15 Circuit colouring . 72

16 Assignment of Boolean variables . 73

17 Input-output-cone analysis for test relaxation 76

18 SAT-ATPG with 32-bit fault dropping for stuck-at faults — average
times per run in comparison (columns 7–9 in Table 5) 83

19 MiraXT — design architecture . 100

xv

LIST OF FIGURES

20 Data from Table 15 in graphical form 105

21 Generation of the combined SAT instance for a fault cluster 114

22 SAT-ATPG with dynamic compaction — extraction of necessary
assignments . 130

23 Construction of the fault list . 132

24 Enhanced dynamic compaction for SAT-ATPG— impact of con-
5ict limit α and fault list sorting . 142

25 Mapping of resistive bridging faults to CMS@ faults 156

26 Sorting bit arrays using SAT . 166

27 SAT-ATPG for transition faults with control of switching activity
on neighbours — mapping to ECMS@ faults 173

28 Circuit under test connected to power supply 182

29 Voltage seen by CUT a6er a dI/dt event 183

30 Four-layer power grid . 184

31 SAT-ATPG for power droop test — mapping to ECMS@ faults . . 186

32 ECMS@-based SAT-ATPG for power droop test—choice of control
lines . 193

33 Test of a circuit’s fault secureness — reduction to ECMS@-ATPG . 201

xvi

List of Tables

1 Gate parameters . 15

2 Roth’s logic [202] . 36

3 'e intersection operator . 41

4 SAT-ATPG without fault dropping for stuck-at faults — iscas and
itc’99 circuits . 79

5 SAT-ATPG with 32-bit fault dropping for stuck-at faults — nxp

circuits . 80

6 SAT-ATPG with 32-bit fault dropping for stuck-at faults — per-
formance comparison with PASSAT [67] 85

7 SAT-ATPG without fault dropping for stuck-at faults — classi&ca-
tion and performance comparison with PASSAT [86] 85

8 SAT-ATPG with 32-bit fault dropping for stuck-at faults — com-
parison with a commercial tool (structural ATPG) 87

9 SAT-ATPG for stuck-at faults — evaluation of hard-to-detect faults 89

10 CMS@-based SAT-ATPG with 32-bit fault dropping for gate-ex-
haustive testing — iscas’85, iscas’89 and itc’99 circuits 90

11 CMS@-based SAT-ATPG with 32-bit fault dropping for gate-ex-
haustive testing — nxp circuits . 91

12 SAT-ATPG with 32-bit fault dropping for sets of 10,000 random
CMS@ faults . 93

13 In5uence of VSIDS on the SAT solving time 98

14 SAT-ATPG with multi-threaded SAT solving for stuck-at faults . . 102

xvii

LIST OF TABLES

15 SAT-ATPG with multi-threaded SAT solving for hard-to-detect
stuck-at faults . 104

16 Two-stage thread-parallel SAT-ATPG for stuck-at faults 107

17 Two-stage thread-parallel CMS@-based SAT-ATPG for gate-ex-
haustive testing . 108

18 SAT-ATPG with fault clustering for stuck-at faults — without fault
dropping . 116

19 SAT-ATPG with fault clustering for stuck-at faults — with 64-bit
fault dropping . 118

20 CMS@-based SAT-ATPG with fault clustering for gate-exhaustive
testing — with 64-bit fault dropping 120

21 SAT-ATPG for stuck-at faults — static and dynamic compaction —
test set size . 134

22 SAT-ATPG for stuck-at faults — static and dynamic compaction —
run-time . 136

23 Enhanced dynamic compaction for SAT-ATPG with topological
fault list sorting — impact of con5ict limit α— iscas circuits . . . 144

24 Enhanced dynamic compaction for SAT-ATPG with topological
fault list sorting — impact of con5ict limit α— nxp circuits 146

25 Dynamic compaction for SAT-ATPG—bestTiguanpattern counts
from Tables 23 and 24 in comparison to a commercial tool (struc-
tural ATPG) . 148

26 CMS@-based SAT-ATPG with 32-bit fault dropping for RBFs —
iscas’85, iscas’89 and itc’99 circuits 158

27 CMS@-based SAT-ATPG with 32-bit fault dropping for RBFs —
nxp circuits . 159

28 Two-stage thread-parallel CMS@-based SAT-ATPG for resistive-
bridging faults . 161

29 ECMS@-based SAT-ATPG for stuck-at faults — controlling the
amount of fault-a*ected primary outputs 169

30 ECMS@-based SAT-ATPG for stuck-at faults — run-time-e2cient,
nearly-optimal control of the amount of fault-a*ected primary out-
puts . 171

xviii

LIST OF TABLES

31 ECMS@-based SAT-ATPG for transition faults — minimising the
switching activity of neighbours . 174

32 ECMS@-based SAT-ATPG for transition faults — controlling the
transition direction of neighbours 175

33 ECMS@-based SAT-ATPG for power droop test — comparison to
structural ATPG . 189

34 ECMS@-based SAT-ATPG for power droop test—choice of control
lines . 191

35 Search for longest sensitisable paths with Opt-KLPG (taken from
[131]) . 206

36 iscas’85 benchmark circuits [32] . 219

37 iscas’89 benchmark circuits [31] . 220

38 itc’99 benchmark circuits [7, 48] . 221

39 Industrial benchmark circuits provided by NXP Hamburg [5] . . . 222

xix

If he had a needle to !nd in a haystack, he would proceed at once
with the diligence of the bee to examine straw a"er straw until he
found the object of his search…

I was a sorry witness of such doings, knowing that a little theory and
calculation would have saved him ninety per cent of his labour.

— Nikola Tesla

1

Preface

During the last decade, modern semiconductor technologies have progressed to a
level that allows the fabrication of high-performance integrated circuits (IC) that can
be deployed into a wide variety of devices of daily use, like mobile phones, “smart
watches” and even door locks. In large, this development has been made possible by
the increased ability to miniaturise circuit components. In CMOS (Complementary
Metal-Oxide-Semiconductor [254]) designs, feature sizes of 45 nanometres and
less have become common. But newer technologies have also managed to deal with
other important issues. 'e HKMG (High-k/Metal Gate [105, 35]) technology, for
example, is a CMOS variant that replaces silicon dioxidewithmaterials with a higher
permittivity, which results in ICs with considerably higher energy e2ciency and
less heat dissipation. For instance, the heat dissipation of the Exynos 4 processor, a
32nm HKMG chip with four computing cores that can be operated at 1.6 GHz, is
so low that the IC is being used in Samsung’s newest high-end mobile phones [6].
In comparison, an Intel Pentium 4 (single-core) CPU deployed in desktop PCs in
the year 2000 could be operated at a maximum speed of 1.5 GHz and could reach
temperatures around 100°C [4].

'e downside of these technologies, however, is that the fabrication process is
becoming increasingly di2cult to control, as the new materials have di*erent prop-
erties. In consequence, new chips are more prone to defects. 'e 2011 International
Technology Roadmap for Semiconductors lists the emergence of new technologies
as one of the three key driver areas that will shape the future development of test
methods and test equipment [10]. Hardware test is one of the most important tasks
in the semiconductor production process. And its relevance is not characterised
only by the necessity to identify faulty devices. Test and diagnosis are also crucial
in that they produce feedback without which the semiconductor industry would
not be able to improve their manufacturing processes.

1

In principle, the test of a digital circuit consists of an experiment in which a set of
value combinations (test patterns) are applied to each manufactured circuit. If the
values produced by a circuit under test (CUT) di*er from the expected responses
at any time, then the CUT is known to be defective. In addition, further analysis
known as diagnosis can be performed on each CUT that fails the test in order to
determine the cause of failure.

Expressed in this form, the test experiment may sound simple, but a long path
needs to be walked until the test experiment can be performed. 'e &rst step is the
abstraction of physical reality by means of formal models. First, the digital circuit,
a device that processes input vectors over {0, 1} and produces output vectors over
the same set, is modelled at a certain level of abstraction. In this thesis, combina-
tional circuits are modelled at the gate level, and thus regarded as directed acyclic
graphs, where the nodes can be either input pins, output pins or logic gates, and the
edges are the connections between these components. Each logic gate has a speci&c
functionality described by a primitive Boolean function. 'us, the functionality
of the whole circuit corresponds to a well-de&ned Boolean function that maps the
circuit’s input vectors to the circuit’s responses.

Circuits can also have memory elements. Such circuits are called sequential and
can be modelled as &nite-state machines. In many cases, however, it is convenient
to ignore the memory elements and to only consider the combinational core. 'is
representation also allows to model the circuit’s function over several clock cycles.
In this case, several copies of the circuit’s combinational core are connected in series,
and the sequential expansion of the circuit is regarded as one large combinational
circuit. In this context, a copy of the circuit at a certain point in time is called a time
frame.

Also erroneous behaviour needs to be modelled at a certain level of abstraction.
'is is necessary because the range of possible physical defects is in&nite and non-
discrete. 'erefore, instead of real defects, formal models of defective behaviour are
considered during the preparation of the test experiment. Each model of defective
behaviour is called a fault model. It comprises a set of assumptions that specify the
amount of faults that need to be considered and the e*ect that their occurrence
induces in a circuit. 'emost important property of fault models is that they reduce
the complexity of the problem. For instance, particle-induced defects cannot be
listed exhaustively, as there are in&nitely-many possible particle shapes and the
exact location of the particle is a continuous parameter [179]. In contrast, fault
models de&ne a &nite or at least countable number of faults.

'e most-used fault model is the (single) stuck-at fault model [72, 90], which as-
sumes that a circuit’s faulty behaviour stems from exactly one line being either

2

1. PREFACE

stuck-at 0 or stuck-at 1, i.e. the line permanently has the logic value 0 or 1, respect-
ively, independently of the value driving the line. 'e stuck-at fault model is the
dominant fault model used in practical applications because test patterns generated
for stuck-at faults usually cover many permanent defects, and because the model
has the advantage that it de&nes a relatively small number of faults. However, it has
been shown that the stuck-at fault model does not accurately re5ect several defect
types encountered in the currently dominant CMOS technology [91, 110, 161, 11].
For example, shorts and opens account for a large portion of physical defects in
CMOS ICs [91, 49], but the stuck-at fault model provides only a very rough ap-
proximation to the behaviour caused by these defects, especially considering that
a substantial fraction of shorts and opens are resistive [200]. As a consequence,
sophisticated non-standard fault models have been introduced, especially in order
to allow modelling of very complex e*ects involving multiple lines, like capacitive
crosstalk [149, 42, 261, 143], ground bounce [236] or power supply noise [228, 229].
Regarding complex fault models, there are two main approaches. 'e &rst con-
sists in modelling speci&c situations individually. However, this approach usually
requires the implementation of dedicated algorithms for each individual model,
e.g. [77, 182, 118, 92]. Aside from the cost of implementing di*erent algorithms,
also the integration of di*erent methods is complicated because each algorithm
may need to model the problem at its own abstraction level. For this reason, also a
trend towards generic fault models has emerged [64, 144, 119, 158].

Once the models used to represent the circuit and erroneous behaviour have been
&xed, automatic test pattern generation (ATPG) can take place. Due to the large
number of test patterns that would need to be applied if all possible input com-
binations were considered (2n for a combinational circuit with n input pins), the
dedicated generation of test patterns to cover the set of modelled faults is the most
important task in testing.

For a &xed fault model, a test pattern p is said to detect a fault f if the response of
the fault-free circuit di*ers from the response of the circuit with the fault f when
p is applied to the circuit’s inputs. A fault is called detectable if a test pattern exists
that detects it. If no such pattern exists, the fault is called undetectable. ATPG is the
process of calculating a test pattern that detects a fault f if f is detectable. An ATPG
algorithm is called complete if it is guaranteed to &nd a test pattern if one exists. If
a complete algorithm does not &nd a pattern that detects a fault f , that proves f ’s
undetectability.

Although the fault detection problem for combinational circuits is NP-complete
[128], the average complexity of most ATPG instances found in practice is only
O(n3) [256, 189]. However, ATPG still remains one of the most challenging tasks

3

in testing. In order to overcome the problem’s complexity, test pattern generation is
usually combined with fault simulation. A6er the generation of a certain number of
test patterns, these are simulated in order to determine which not yet targeted faults
are also detected by them. Faults detected by simulation can be removed from the
target fault list, thus reducing the number of test generation instances to be solved.
'is technique is known as fault dropping. Another positive e*ect of fault dropping
is the reduction of pattern count.

Since the cost of test application depends strongly on the number of test patterns to
be applied, test compaction techniques are employed to further reduce the number
of generated tests without loss of fault coverage. Test compaction can be either
dynamic, in which case the test search is guided such that each generated test is
suitable for the detection of a higher number of faults, or static, in which case the
size of the generated test set is reduced a6er the test generation process has been
completed.

ATPG algorithms that perform the search based on the circuit’s structure are called
structural. 'e &rst steps in structural testing of logic circuits were made by Eldred
in 1959 [72], but it was Roth’s work at IBM which resulted in the &rst systematic
and complete ATPG method for stuck-at faults — the D-Algorithm [201, 202]. 'e
algorithm uses a &ve-valued logic known as Roth’s logic. 'is logic comprises the
following values: the logic values 0 and 1, the error values D (assigned to lines that
should have the value 1 but have the value 0 due to the presence of the fault) and
D′ (assigned to lines that should have the value 0 but have the value 1), and the
unspeci!ed value x, which is used to represent lines that have not yet been assigned
a value by the algorithm. 'e algorithm assigns the value D or D′ to the fault site
depending on whether the target fault is a stuck-at-0 or a stuck-at-1 fault, and
computes the values that that assignment implies on other lines. When no further
implications can be derived, this branch-and-bound algorithm makes decisions,
i.e. it assigns values to yet unspeci&ed lines such that the fault e*ect is propagated
towards a primary output and such that the values that have been assigned to lines
driven by yet unspeci&ed values can be justi!ed. If a decision leads to a con5ict, the
algorithm backtracks, i.e. it corrects wrong decisions and computes the implications
of the correction. 'e algorithm terminates when a fault e*ect becomes visible at a
primary output and all assignments are justi&ed, in which case the fault is detectable,
or when the complete search space has been exhausted without &nding a solution,
in which case the fault is proved to be undetectable.

Two important structural algorithms that can be seen as derivatives of the
D-Algorithm are PODEM (Path-Oriented Decision Making) [98] and FAN (Fan-
outOriented Test Generation) [89, 87], which speed up the process by restricting the

4

1. PREFACE

locations at which decisions can bemade, thus reducing the number of backtracking
operations. Some structural algorithms implemented in commercial and propriet-
ary ATPG tools are known to be based on FAN, which is an e2cient algorithm able
to solve a large number of easy-to-solve ATPG instances very fast. Most proposed
enhancements of these basic ATPG algorithms [140, 218, 93, 159, 250, 108] are
structural as well and rely on learning techniques in order to improve the perform-
ance of structural ATPG on hard-to-solve ATPG instances.

An alternative to structural ATPG algorithms are SAT-based methods, i.e. meth-
ods that map the ATPG problem to the problem of Boolean satis!ability. 'is
is the problem of deciding whether a Boolean formula is satis!able, i.e. whether
its variables can be assigned the values 0 or 1 such that the whole formula eval-
uates to 1. So6ware tools used to determine the satis&ability of SAT formulae
are called SAT solvers. Currently, SAT solvers are used in many &elds like plan-
ning [136, 96], electronic design automation [166], and veri&cation and test of
digital systems [219, 27, 46, 224, 114, 77, 164, 69, 55, 209, 207], especially because
many search problems can be converted into SAT problems very e2ciently [151].

Given a combinational circuit and a fault f , SAT-based ATPG consists in generating
a SAT formula that represents the structure of the circuit both in absence and in
presence of the fault. 'e SAT instance is formulated such that it is satis&able
if and only if f is detectable. If the SAT solver proves that the SAT formula is
unsatis&able, that proves f ’s undetectability. Conversely, if the SAT solver &nds
a Boolean assignment that satis&es the SAT formula, f is detectable. 'en, the
values assigned to the Boolean variables that represent the circuit’s primary inputs
constitute a test pattern that detects f .

'e &rst approaches to reduce the ATPG problem to a SAT problem were proposed
several decades ago [220, 147, 148, 237], but structural algorithms continued to be
the standard used in industrial applications due to their better run-times. However,
it was shown recently that SAT-based ATPG outperforms structural methods when
applied to hard-to-detect and to undetectable faults [242]. 'e reason for this is
that the advances made in SAT solving a6er the year 2000 were mostly driven by
formal-veri&cation problems, i.e. problems in which the equivalence of two models
of the same system is to be proved, or in which speci&c behavioural properties of a
system are to be checked. In such problems, the typical workload consists of few,
but very hard and usually unsatis&able SAT instances.

'is doctoral thesis covers the contributions to the &eld of SAT-based test pattern
generation made by the thesis’s author between 2008 and 2012. E2cient algorithms
aimed at enhancing the e2ciency of SAT-based ATPG in terms of run-time and
test compactness were developed and incorporated into the SAT-based ATPG tool

5

Tiguan (Thread-parallel Integrated test pattern Generator Utilising satis&ability
ANalysis), which was implemented from scratch paying special attention to the
creation of a particularly e2cient and extensible code base. In combination with
a pattern-parallel fault-simulator [73], Tiguan is able to classify all stuck-at faults
in three suites of well-known academic benchmark circuits. In particular, Tiguan
classi&es all stuck-at faults in a suite of industrial circuits without aborts1, whereas
a commercial, structural tool was not able to classify all faults, even using a high
con5ict limit. In addition, Tiguan outperforms the SAT-ATPG tool PASSAT de-
veloped at the University of Bremen in regard to run-time, number of aborts and
test compactness.

A further important contribution is a new dynamic compaction technique speci&c-
ally designed for the integration into a SAT-ATPG framework, as the rather high
pattern count was traditionally considered to be a major drawback of SAT-based
methods. 'anks to the new technique, Tiguan is able to generate smaller test sets
than a commercial, structural ATPG tool for all academic benchmark circuits.

Like the fault simulator, the two SAT solving engines incorporated into Tiguan

were developed within the author’s research group, which allowed to implement
customisations into the SAT solvers, and to tune their internal parameters so that
they could solve the type of SAT instances generated by Tiguanmore e2ciently.
Moreover:

▸ 'e SAT solverMiraXT [152, 151] supports thread parallelism. 'at means
that it can distribute the e*ort of SAT solving among several computation
threads that can run in parallel onmulti-processor ormulti-core systems. 'e
optimal utilisation of this feature was analysed systematically and a two-stage
methodwas developed, where faults are processed using di*erent SAT solving
parameters depending on the hardness of the produced SAT instances.

▸ 'e SAT solver antom [217] supports modern, advanced SAT solving
techniques:

◾ Incremental SAT solving with and without assumptions— this means
that several SAT instances can be solved using only one instantiation of
the SAT solver, and that con5ict knowledge learnt during the solving
of each SAT instance can be shared with subsequent instances, thus

1In order to prevent an excessive grow of the total run-time, it is usual for both structural and
SAT-based algorithms to abort the processing of single faults when a timeout or a con5ict limit has
been reached. In that case, those faults remain unclassi&ed. A lower number of aborts stands for a
higher algorithm quality.

6

1. PREFACE

speeding up the solving process. In addition, initial partial assignments
(assumptions) can be passed to the SAT solver. Based on this, a fault
clustering technique was implemented into Tiguan, which allowed to
further reduce the total time needed to classify all stuck-at faults in a
suite of nineteen industrial benchmark circuits by 47.7%. For some
circuits a reduction of up to 65.3% was achieved.

◾ SAT solving with qualitative preferences [95, 96, 65] — this is a formal
mechanism that allows the user to specify a set of Boolean variables that
should be assigned to a preferred value; also the relative importance of
those preferences can be laid down. 'at makes it possible to control
with precision the quality of the solutions computed by the SAT solver,
and also to formally de&ne solution optimality. 'is mechanism was
employed to implement a SAT-based framework for the generation
of test patterns that satisfy user-de&ned optimisation goals, and the
generated test patterns are guaranteed to be optimal. 'is constitutes a
problem class that cannot be solved trivially using structural algorithms.

One of the most important contributions of this thesis is the de&nition of two gen-
eric fault models, the conditional multiple stuck-at fault model (CMS@FM) and the
enhanced conditional multiple stuck-at fault model (ECMS@FM), and the incorpora-
tion of their support into the SAT-ATPG tool Tiguan. As was explained previously,
the stuck-at fault model no longer su2ces to cover all types of defects that occur
increasingly in newer technologies. Using the CMS@FM, it is possible to describe
defects that induce faulty behaviour on an arbitrary number of victim lines, and
to specify the activation conditions for the defect by imposing speci&c values on a
number of aggressor lines. A particular feature of CMS@-based SAT-ATPG is its
5exibility, which allows the description of ATPG problems with varying degrees of
complexity without the need to modify the SAT-ATPG core engine. For example,
CMS@-ATPGwas used to generate with equal comfort patterns for relatively simple
test concepts, like gate-exhaustive testing [169, 43], and for realistic defect-based
models like resistive-bridging faults [198, 199, 197, 75, 78]. In combination with the
expansion of sequential circuits, this model can also be used to describe dynamic
fault e*ects.

'e ECMS@FM goes even further and supports features not o*ered by previously
existing generic fault models. In combination with SAT solving using qualitative
preferences, ECMS@-based SAT-ATPG allows the imposition of so" constraints on
any number of lines, and thus to control the quality of the generated test patterns
with regard to a wide variety of needs. For instance, a set of lines can be chosen
and the number of 0 or 1-assignments made to those lines can be maximised or

7

minimised. Some of the example applications based on this principle and discussed
in detail in this thesis include:

▸ 'e generation of test patterns that maximise the number of primary outputs
towards which the fault e*ect is propagated. Such test patterns have been
shown to increase the coverage of transition delay faults [247].

▸ 'e generation of test patterns that minimise the number of fault-a*ected
primary outputs, which &nds application e.g. in diagnosis [124].

▸ 'e generation of test patterns that control precisely the switching activity
of a number of selected lines, or globally. For instance, slow-down-crosstalk
testing [30] requires that a number of aggressor lines switch in the opposite
direction in which the victim line switches, such as to increase the fault e*ect.

'e ECMS@-based SAT-ATPG framework was submitted to a hard test by employ-
ing it to generate test sequences for power droop testing [245, 177]. Triggered by two
di*erent mechanisms over a large number of clock cycles, power droop is a signal
integrity issue that leads to localised delay e*ects. ATPG for power droop consti-
tutes an extremely hard variation of sequential test generation, given that a large
number of times frames need to be modelled and that three di*erent optimisation
objectives need to be satis&ed simultaneously.

Finally, large parts of Tiguan’s implementation were optimised and documented
such as to provide a C++ library that allowed other researchers to use Tiguan as a
SAT-ATPG back-end for various applications.

Organisation of this thesis

Chapters 2 and 3 provide the reader with an introduction to all basic concepts
behind the work covered in the thesis. 'e contents constitute pre-existing know-
ledge originated in the work of other authors, and references to the original works
have been included where appropriate. Chapter 2 concentrates on the basic prin-
ciples of testing and, in particular, of test pattern generation. Chapter 3 makes a
formal introduction of the SAT problem, and discusses the basic algorithms for the
solution of this problem. Special attention is given to techniques used by modern
SAT solving tools, as the knowledge of these techniques is fundamental to analyse
the experimental results presented in later chapters. 'en, this chapter focuses on
the application of SAT solving to test pattern generation. It introduces the basic
principle and reviews previously existing works on SAT-based ATPG.

8

1. PREFACE

Chapters 4–6 introduce the SAT-based test pattern generator Tiguan and discuss
the techniques that were developed in order to increaseTiguan’s run-time e2ciency
and compaction ability. Chapter 4 begins with a summary of Tiguan’s development
history. A6er the formal introduction of the CMS@FM, the chapter resumes with
an accurate description of Tiguan’s main algorithms, which operate internally on
the CMS@ model. Chapter 5 focuses on techniques to improve Tiguan’s run-time
e2ciency. 'e &rst part of the chapter gives insight into the algorithms used by the
SAT engine MiraXT, and discusses the analysis that was performed in order to eval-
uate Tiguan’s performance on multi-core systems. 'e second part of the chapter
introduces the SAT engine antom and explains the most important di*erences
between antom and MiraXT from the point of view of a SAT-ATPG application.
'en, a fault clustering technique that utilises antom’s incremental SAT solving
is presented and evaluated. Finally, Chapter 6 discusses the dynamic compaction
method that was developed for dedicated incorporation into Tiguan. 'e chapter
also analyses the impact that fault list pre-sorting and a con5ict limit have on the
performance of the dynamic compaction algorithm.

Chapters 7 and 8 address the application of SAT-based ATPG to complex fault
models. Chapter 7 gives a thoroughmotivation for the need of complex faultmodels,
discusses applications of the CMS@FM, and introduces the ECMS@FM, which
enables the speci&cation of optimisation goals. 'e implementation of ECMS@-
based SAT-ATPG is explained in detail, and two important applications of the
new ECMS@FM are discussed and evaluated. Chapter 8 discusses the previously
mentioned application of ECMS@-ATPG to power droop testing, and focuses on
strategies to map the original problem to ECMS@-ATPG such as to achieve the best
combination of test quality and run-time e2ciency.

To conclude the thesis, Chapter 9 discusses further application possibilities for SAT-
based ATPG. A C++ library was developed in order to allow client applications to
incorporate Tiguan’s functionality in the form of a SAT-ATPG back-end engine.
'e chapter discusses the principles of the interface design, which attempts to
achieve maximum 5exibility for the client application and e2cient communication
between the client application and the SAT-ATPGback-end. 'en, short summaries
of selected works by other authors are presented. 'ese works employ Tiguan as
ATPG engine and have relevance in the research areas of process variations and
fault tolerance.

Finally, Chapter 10 closes the thesis with a brief summary of the presented topics
and a discussion of the role that SAT-based ATPG is expected to play in industrial
applications.

Appendix A provides details on the used benchmark circuits.

9

Own publications

A complete list of all publications by the author of this thesis is provided on pages
223–226. References in the form of a capital letter followed by a number, both
enclosed in brackets (for example, [J2]), refer to this publication list.

Note that parts of the work covered in Chapters 4–9 have been previously published
in conference or workshop proceedings, as well as in scienti&c journals. A footnote
on the &rst page of each of these chapters informs the reader which of the author’s
publications share contents with that speci&c chapter.

'e author’s main works, which served as basis for this doctoral thesis, are the
following:

▸ [C16]: 'is is the seminal work in which the SAT-based test pattern generator
Tiguan, the CMS@ fault model and various applications of this fault model
were introduced. 'ese topics are covered in Chapter 4 and in Section 7.2.

▸ [J2]: 'is is the journal version of [C16].

▸ [W7]: In this work, the performance of Tiguan based on the utilisation of
thread-parallel SAT solving on multi-core architectures was evaluated. 'is
topic is covered in Section 5.1.

▸ [C13]: 'is work presented a dynamic compaction method for SAT-based
ATPG. 'is topic is covered in Chapter 6.

▸ [C7]: In this work, newest SAT solving techniques were incorporated into
Tiguan. 'is allowed the development of a fault clustering technique for
the enhancement of Tiguan’s run-time performance (this topic is covered
in Section 5.2); and the introduction of ECMS@-based SAT-ATPG for the
solution of complex test generation problems with optimisation constraints
(this topic is covered in Chapter 7).

▸ [C5]: In this work, the capabilities of the new ECMS@-based ATPG frame-
work were explored by means of the application to test generation for power
droop testing. 'is topic is covered in Chapter 8.

▸ [C18]: 'is work (and its journal version [J3]) was originally performed for
the author’s undergraduate studies (Studienarbeit) and published prior to the
author’s time as a doctoral student. It provided the necessary background
knowledge for the work presented in [C5].

All other publication references (a number enclosed in brackets, e.g. [55]) included
in the text refer to the general bibliography list, to be found from page 227 onwards.

10

2

Introduction to the test of digital

circuits

'is chapter provides a preliminary introduction to the area of research covered in
this thesis. It is not intended to be an exhaustive introduction to the test of digital
circuits, but rather to provide the reader with the background knowledge required
to understand this thesis, and to establish the terminology used to refer to certain
concepts for which di*erent authors might use diverse terms. Further information
on the topics covered in this chapter can be found in well-known text books, for
example in [12, 34, 129].

2.1 The Boolean algebra

'e Boolean algebra is an algebra over the set B ∶= {0, 1}. In this algebra, one unary
and two binary operations are de&ned:

▸ the negation ¬, where ¬0 = 1 and ¬1 = 0,

▸ the conjunction ⋅, where 0 ⋅ 0 = 0, 0 ⋅ 1 = 0, 1 ⋅ 0 = 0 and 1 ⋅ 1 = 1,

▸ and the disjunction +, where 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 1.

Along with these operations, the Boolean algebra is de&ned by the following axioms:

▸ commutativity— a + b = b + a and a ⋅ b = b ⋅ a for all a,b ∈ B,

▸ associativity— a+(b+c) = (a+b)+c and a ⋅(b ⋅c) = (a ⋅b) ⋅c for all a, b, c ∈ B,

▸ and distributivity— a+(b ⋅ c) = (a+b) ⋅(a+ c) and a ⋅(b+ c) = (a ⋅b)+(a ⋅ c)
for all a,b, c ∈ B.

11

2.2. CIRCUITS

By combination of the three basic operations, more operations can be de&ned. 'e
most relevant combination is the exclusive disjunction⊕, a binary operation de&ned
by a⊕b = (a ⋅¬b)+(b ⋅¬a) for all a, b ∈ B. Note that commutativity and associativity
both hold for the exclusive disjunction. Also, 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1.

In addition, several important properties of the Boolean algebra can be derived
from the main axioms. Some examples follow:

▸ absorption— a ⋅ (a + b) = a and a + (a ⋅ b) = a for all a,b ∈ B,

▸ complement rule— a + ¬a = 1 and a ⋅ ¬a = 0 for all a ∈ B,

▸ and De Morgan’s law — ¬(a + b) = ¬a ⋅ ¬b and ¬(a ⋅ b) = ¬a + ¬b for all
a,b ∈ B.

2.2 Circuits

2.2.1 Modelling levels

At any level of abstraction, a digital circuit can be seen as a device that processes
input data and produces output data, where both the input and output data are
represented by vectors over B. 'e circuit’s function is de&ned by the lengths of
the input and output vectors and by the mapping from the input to the output
domain. Hence, the simplest representation of a circuit is the truth table. For
example, Figure 1 shows the truth table of a half-adder, a circuit that takes two
arguments a and b and produces two outputs c and d such that the sequence cd is
the binary representation of a + b.

inputs outputs

a b c d

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Figure 1. Truth table of a half-adder

However, truth tables are of little practical use for large circuits and for tasks that
depend not only on the circuit’s function but also on its implementation. Hence,
numerous other ways of modelling a circuit are considered in the literature and
in practice. In order to organise the di*erent types of models, di*erent levels of

12

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

abstraction (also called modelling levels) are distinguished, but di*erent authors
may de&ne di*erent numbers of modelling levels depending on what they want to
illustrate [179]. For instance, Hayes de&nes in [111] three design levels: processor
level, register level and gate level.

In [253], where the focus lies on design veri&cation and test, a hierarchy composed
of four design levels is given. 'e design process is viewed as a series of trans-
formations that map design descriptions from higher levels to lower levels. 'e
highest modelling level is the behavioural or architecture level which focuses on the
functionality of the modelled circuit or system. Given a design speci&cation, the
behaviour of the system is speci&ed using algorithmic notation, for example in the
form of a hardware description language. 'e next lower level is the register-transfer
level, which contains more structural information in terms of the implemented
logic functions, data and control paths. 'e implementation of logic functions is
modelled in the next lower level, the logical or gate level. In this level, a circuit is
composed of a number of logic gates, where each logic gate is a component with a
speci&c functionality that is de&ned by a Boolean function. For instance, an and

gate is a component with two inputs a and b and an output c, where c = a ⋅ b. Gates
are connected to each other by signal lines. By traversing the circuit in topological
order, it is possible to construct a Boolean function that represents the whole cir-
cuit. Finally, the lowest level is the physical or transistor level. In the same way in
which circuits can be modelled by gates and connections between gates, gates are
internally modelled by transistors and by connections between di*erent transistors
or between transistors and power sources (VDD) or ground. 'e transistor level can
be seen as a re&nement of the gate level, and sometimes a mixture of both levels can
be used for testing. For instance, faults can be modelled at transistor level in order
to re5ect defects that are more realistic from a physical point of view, but the rest
of the circuit may be modelled at gate level such as to avoid unnecessary overhead,
for example during simulation tasks.

Some authors also consider a lower level, the layout level [129]. In this level, the cir-
cuit description encompasses line widths, inter-line and inter-component distances,
as well as device geometries.

'roughout this thesis, gate-level modelling is assumed. 'e advantage of this level
is that it can be regarded as technology-independent. In most process technologies,
synthesis tools have readily available libraries containing mappings for the basic
logic gates. Hence, it is relatively easy to transform a gate-level description into a
(technology-dependent) transistor-level description.

13

2.2. CIRCUITS

2.2.2 Gate-level net lists

A digital combinational circuit C is a device with n inputs and m outputs, whose
behaviour can be uniquely speci&ed by a Boolean function ϕC ∶ B

n
→ Bm.

At the gate level, a combinational circuit is represented by a gate-level net list, a
directed acyclic graph (N,L), where N is the set of nodes and L is the set of edges.
'e set of nodes is composed of the following sub-sets:

▸ G, the set of logic gates,

▸ F, the set of fan-out nodes,

▸ I, the set of inputs, and

▸ O, the set of outputs.

'e edges represent connections between nodes. 'ey are called signal lines, wires
or nets. 'e number of ingoing and outgoing edges of each node is determined by
the node’s type. 'e node sets I andO represent the inputs and outputs of the circuit,
respectively. Hence, the former have no ingoing edges and exactly one outgoing
edge, while the latter have exactly one ingoing edge and no outgoing edges.

Logic gates have exactly one output (outgoing edge) and one ormore inputs (ingoing
edges). In this thesis, the output of a gate together with the set of all its inputs are
referred to as that gate’s ports.

Each logic gate g ∈ G implements a Boolean function ϕg ∶ B
k
→ B, where k is the

gate’s number of inputs. Which function is implemented by g is speci&ed by g’s type.
For instance, a two-input and gate implements the logic conjunction, i.e. for every
pair of inputs a,b ∈ B, the output produced by the gate equals a ⋅ b.

Figure 2 lists all basic gate types considered in this thesis, along with the Boolean
function they implement and their symbol in graphical representations of circuits.
Although these gates su2ce to construct circuits that implement any Boolean func-
tion, versions of and, nand, or and nor gates with more than two inputs are also
considered by many authors. However, such gates do not require special attention
in the description of algorithms, because their functionality can be expressed in
generalised form independently of the number of gate inputs. 'us, the functional-
ity of bu*ers and inverters can be expressed based on one single parameter called
inversion. Given an input v, the gate produces the output ¬v if it is inverting (inv),
or the output v if it is not inverting (buf).

Analogously, the functionality of an and, nand, or or nor gate g can be described
using only two parameters, the gate’s inversion and the gate’s controlling value cv(g).

14

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

buf (bu*er)
a↦ a

inv (inverter)
a↦ ¬a

and

(a, b)↦ a ⋅ b
or

(a, b)↦ a + b
xor

(a, b)↦ a ⊕ b

nand

(a, b)↦ ¬(a ⋅ b)
nor

(a, b)↦ ¬(a + b)
xnor

(a, b)↦ ¬(a ⊕ b)

Figure 2. Gate types

'e Boolean inverse of cv(g) is called g’s non-controlling value (ncv(g)). If at least
one input of g has the logic value cv(g), then g produces the output value cv(g)
independently of the logic value on all other inputs (or the output ncv(g) if g is
inverting). g can only produce the output ncv(g) (cv(g) if g is inverting) if all its
inputs have the logic value ncv(g). Table 1 lists the inversion, and the controlling
and non-controlling values of these four types of gates.

Table 1

Gate parameters

gate type inverting controlling value non-controlling value

and no 0 1
nand yes 0 1
or no 1 0
nor yes 1 0

15

2.2. CIRCUITS

'e functionality of xor and xnor gates cannot be expressed in this form. Hence,
while gate-level-net-list-based algorithms can process all other gate types using a
generic procedure that works only in function of the gate’s inversion and controlling
value, xor and xnor gates need to be processed separately.

Since a⊕ b = (a ⋅ ¬b) + (b ⋅ ¬a) and a⊕ b = ¬(¬(a ⋅ ¬(a ⋅ b)) ⋅ ¬(b ⋅ ¬(a ⋅ b))) for
all a,b ∈ B, xor and xnor gates can also be replaced by equivalent sub-circuits
composed of two inverters, two and gates and an or gate, or by equivalent sub-
circuits composed of four nand gates, without changing the logic functionality of
the circuit. However, this replacement can alter the timing of the circuit and should
thus be used only for algorithms that operate only on the logic functionality of the
circuit.

Going back to the de&nition of the graph (N,L), the set of fan-out nodes F is
composed of nodes with one ingoing edge and at least two outgoing edges. 'e
ingoing edge and all outgoing edges of a fan-out node are regarded as one signal
that is branched to distribute the output of one gate to multiple other gates. 'e
ingoing edge is called the fan-out’s stem, while the outgoing edges are called the
fan-out’s branches.

Figure 3 shows an example circuit and illustrates the naming conventions observed
in this work. Inputs and gates are denoted by lower case letters. For simplicity, lines
are given their own identi&ers only when strictly necessary. When that is not the
case, they are referred to using the identi&er of the gate at which they originate.
When necessary, the branches of a fan-out node are denoted by the stem’s identi&er,
but with an index. Circuit outputs are denoted by the identi&er of their ingoing edge.
'e shown circuit represents the functionality of a half-adder (see also Figure 1).
Gate c implements the Boolean function (a,b)↦ a ⋅ b and gate d implements the
Boolean function (a, b)↦ a ⊕ b. Hence, the whole circuit implements the Boolean
function B2

→ B2, (a,b)↦ (a ⋅ b,a ⊕ b).

Let a line connect the output of a gate g1 to one of the inputs of a gate g2. 'en, g2 is
called a successor gate of g1, and g1 is called a predecessor gate of g2.

If the output of g1 is connected to a fan-out node, then all gates connected to the
fan-out branches of that node are g1’s successors, and g1 is a predecessor of all those
gates.

'e sequence of gates g1, . . . , gk is called a path from g1 to gk if gi+1 is a successor gate
of gi for all i = 2, . . . , k. A path is said to be complete if it starts at a circuit input and
ends at a circuit output. A path that is not complete is called partial. For a gate gi,
the input of gi that is connected to gi−1 is called the on-path input of gi, as that line
belongs to the path. All other inputs of gi are called o%-path inputs.

16

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

inputs

outputs

fan-out node

a b

c d

a
1

a
2

b
1

b
2

Figure 3. Gate-level half-adder

output cone OC(g)input cone IC(g)

influence region IR(g)

g

Figure 4. Cones of influence

17

2.2. CIRCUITS

'e output cone of a gate g (oc(g)) is de&ned as the set of all gates that belong to a
path between g and any circuit output, while the input cone of g (ic(g)) is de&ned as
the set of all gates that belong to a path between any circuit input and g. Let g1, . . . , gn
be all circuit outputs contained in oc(g). 'en, the set ir(g) ∶= ic(g1)⋃⋯⋃ ic(gn)
is called g’s in&uence region (Figure 4).

'e number of fan-out nodes and the average number of fan-out branches per node
are a factor that strongly in5uences the run-time e2ciency of many algorithms
that work on gate-level net lists. Hence, some algorithms partition the circuit into
fan-out-free regions (FFR), i.e. sub-circuits without fan-out nodes, and then process
each FFR separately. Each FFR has the form of a tree, where its root gate is connected
either to a circuit output or to a fan-out node. 'e partition of a circuit into FFRs is
unique.

a �

� b

c

Figure 5. A two-input multiplexer

To close this section, Figure 5 shows the symbol used in this thesis to represent
multiplexers. A two-input multiplexer is a circuit that implements the Boolean
function (a, b, c)↦ (c ⋅ a)+ (¬c ⋅ b), i.e. the control input c selects which of the two
inputs a and b is passed to the output.

2.2.3 Sequential circuits

A digital sequential circuit is a circuit that contains cycles due to the presence of
memory elements, mostly &ip-&ops. Flip-5ops are clocked, i.e. they are connected
to a device that generates a clock signal. 'e clock signal oscillates between logic 1
and logic 0, normally with a 50% duty cycle, and is used to synchronise all 5ip-5ops.
'ese are designed such that they can store a new value only while the clock is high
(or only when the clock is low, depending on the implementation). A clock cycle is
composed of one falling (a 1→0 transition) and one rising edge (a 0→1 transition)
of the clock and its length is called clock period. 'is length is denoted by Tclk. In
normal operationmode, new input vectors are applied to the sequential circuit once
per clock cycle.

18

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

a

b

clock

flip-flop combinational core

c

d

e

(a) sequential circuit

a

b

c

d

e

feedback when modelling several time frames

secondary input secondary output

(b) simpli&ed representation

Figure 6. Example sequential circuit

In contrast to combinational circuits, the functionality of sequential circuits cannot
be simply speci&ed by a Boolean function. Instead, a sequential circuit C with n
inputs,m outputs and k 5ip-5ops can be regarded as an implementation of a &nite-
state machine [171] with 2k or less states. 'e states are encoded by the data stored
in the 5ip-5ops, while the combinational core of the circuit computes the output
function ϕC ∶ B

n
×Bk

→ Bm and the transition function τC ∶ Bn
×Bk

→ Bk, which
depend both on the inputs and on the present state. 'e ϕC-values correspond to
the circuit’s outputs, while the τC-values are stored back into the 5ip-5ops.

19

2.2. CIRCUITS

time frame 	 time frame

combi-

national

core

combi-

national

core

Figure 7. Sequential expansion

An example sequential circuit is shown in Figure 6 (a). In this example, n = 2,m = 1
and k = 1. 'e corresponding state machine has two states, 0 and 1, encoded by c.
ϕC maps (a,b, c) to b + c and τC maps (a,b, c) to (a ⋅ c).

When fault simulation or test pattern generation are applied to sequential circuits,
it is o6en convenient to ignore the 5ip-5ops and to only consider the combinational
core (Figure 6 (b)). 'e outputs of 5ip-5ops (c in the example) are then treated as
additional inputs of the combinational core. 'ese are called pseudo-primary or
secondary inputs (SI).'e inputs of memory elements (d in the example) are treated
as additional outputs of the combinational core. 'ese are called pseudo-primary
or secondary outputs (SO). Regular inputs and outputs (a, b and e) are then called
primary inputs (PI) and primary outputs (PO), respectively. Instead of the output
function ϕC and the transition function τC, only one global Boolean function is
considered: ϕseq

C ∶ B
n+k
→ Bm+k, which is computed by the combinational core. In

the example, ϕseq
C maps (a,b, c) to (b + c,a ⋅ c).

'is representation also allows to model the circuit’s function over several clock
cycles. In this case, several copies of the circuit’s simpli&ed representation are
connected in series, where the correspondence between secondary outputs and
secondary inputs that are connected to the same 5ip-5op in the original circuit has
to be observed (Figure 7). In this context, a copy of the circuit at a certain point in
time is called a time frame.

20

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

2.3 Fault models

2.3.1 Defects, faults and errors

In engineering, models bridge the gap between physical reality and mathematical
abstraction. 'is is especially true in the test of digital circuits since the range of
possible physical defects is in&nite and non-discrete. For this reason, the modelling
of faulty behaviour is one of the most important issues that need to be considered
for the development and application of test algorithms.

Bushnell and Agrawal distinguish between three di*erent terms: defects, faults
and errors [34]. A defect is the unintended di*erence between the implemented
hardware and its intended design. However, in this case, the term only refers to
defects that result from the imperfection of themanufacturing process, not to design
defects. Some typical defects in VLSI chips are [122]:

▸ process defects — missing or broken contacts, parasitic transistors, shorts,
oxide breakdown, etc.,

▸ material defects — cracks, crystal imperfections, surface impurities, etc.,

▸ age defects — dielectric breakdown, electromigration, etc.,

▸ package defects — contact degradation, seal leaks, etc.

A fault is a formal representation of the defect, while the wrong response of a
defective system is an error. For example, assume that one of the inputs of an and

gate is shorted to ground. 'e unintended short is the defect. It can be represented
by a stuck-at-0 fault, i.e. a formalmodel that assumes that the shorted line has always
the logic value 0 independently of the value produced by the gate driving the line.
An error occurs if the value 1 is applied to both inputs of the gate. 'en, the gate
produces the erroneous output value 0 instead of the expected 1.

A fault model is a set of assumptions that specify the amount of faults that need to
be considered and the e*ect that their occurrence induces in a circuit. Not all fault
models try to re5ect physical reality with accuracy. In fact, the main aim of fault
models is to reduce the complexity of the problem. For instance, particle-induced
defects cannot be listed exhaustively, as there are in&nitely-many possible particle
shapes and the exact location of the particle is a continuous parameter [179]. For
this reason, amodel that attempts to represent every possible particle-induced defect
is not feasible. Instead, fault models de&ne a &nite or at least countable number of
faults, where the behaviour of each fault corresponds roughly to the behaviour of a
set or a class of realistic defects.

21

2.3. FAULT MODELS

'e following list names some of the possible e*ects of manufacturing defects
[161, 109, 179]:

▸ 'e Boolean function ϕC computed by C can be altered.

▸ 'e function computed by the circuit may become non-Boolean, i.e. some
output of the circuit produces a voltage that cannot be clearly interpreted as
logic 0 or logic 1.

▸ Some lines in the circuit can show a memory behaviour, thus making a com-
binational circuit sequential.

▸ 'e timing of the circuit can be a*ected.

2.3.2 The stuck-at fault model

'emost-used fault model is the (single) stuck-at fault model (SAFM) [72, 90]. 'is
model assumes that a circuit’s faulty behaviour stems from exactly one line being
either stuck-at 0 (s-a-0) or stuck-at 1 (s-a-1), i.e. the line permanently has the logic
value 0 or 1, respectively, independently of the value produced by its driving gate or
the value on its source fan-out stem. Hence, the number of possible faults is linear
in the number of lines. Nevertheless, empirical experience has showed that a test
pattern set generated for the SAFM can achieve a high coverage of permanent de-
fects. A related fault model is themultiple stuck-at fault model, which allows several
lines to be simultaneously stuck at a certain value. However, test sets generated for
this fault model rarely achieve a considerably better coverage, while test pattern
generation is more complicated due to the larger number of faults.

2.3.3 Delay fault modelling

As explained at the end of Section 2.3.1, some defects do not modify the logical
behaviour of the circuit. Instead, they a*ect the timing of the circuit. Such defects
cannot be covered using the SAFM or other static fault models. In this section, the
most important delay fault models are introduced. 'ese are the gate delay fault
model (GDFM) [37, 188], the path delay fault model (PDFM) [231, 155] and the
segment delay fault model (SDFM) [113].

'e GDFM assumes that a single gate is a*ected, and that the gate propagates either
rising (0→1) or falling (1→0) transitions too slowly. 'e advantage of this model is
the very small number of faults it de&nes. However, the assumption that only one
site is a*ected while the rest of the circuit remains una*ected may not always be

22

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

realistic, as delay faults o6en arise from variations in the manufacturing process,
and such variations tend to a*ect the whole circuit.

Under the PDFM, a complete path is assumed to be faulty. Here, a path is de&ned
as free of timing defects if, for every pair of test patterns that induces a falling (or
a rising) transition at the beginning of the path, the correct logic value stabilises
at the end of the path in less time than the duration of a clock cycle. 'e slack of a
path is the di*erence between the longest possible delay of the fault-free path and
the clock period.

'ePDFM re5ects reality better than theGDFM, as itmodels the accumulated e*ect
of delay variations along a path. However, in the worst case, the number of paths
in a circuit is exponential in the number of fan-out nodes. Hence, the generation
of test patterns for every path is impractical. 'e solution to this problem consists
in identifying a certain number of most critical paths, i.e. paths with a small slack,
and generating test patterns only for those paths [190, 208, 209, 130, 211]. As an
alternative solution, the SDFM has been proposed, according to which only partial
paths are considered. A comparative study on delay fault models was presented for
example in [160].

2.4 Test application and fault coverage

2.4.1 Definitions

Let C be a combinational circuit with n inputs and m outputs, and let ϕC be the
Boolean function implemented by C. Let f be a fault according to a fault model
that represents defects that a*ect the Boolean function computed by C. 'en, the

faulty-case Boolean function is denominated by ϕf
C.

Let p ∈ Bn be an input vector2 (input vectors are also called input patterns, test pat-

terns or tests). p is said to detect f , if ϕC(p) /= ϕ
f
C(p). 'at means, if a manufactured

circuit instance contains a defect that behaves like fault f , the defect’s presence can
be detected by applying the test pattern p to the circuit and observing whether the
circuit’s response is correct. Note, however, that this reasoning cannot be reversed.
A wrong response to the application of p does not automatically imply the presence

2For better readability, a test pattern p ∈ Bn will be written as a sequence b1⋯bn rather than as a
vector (b1, . . . , bn). Each component bi is called a bit.

23

2.4. TEST APPLICATION AND FAULT COVERAGE

of f . It could be any fault that behaves in the same way as f under the application of
p, but that may behave di*erently under the application of other input patterns.

'is de&nition can be extended to a set of faults F ∶= {f1, . . . , frF} (usually called a
fault list) and a set of test patterns P ∶= {p1, . . . ,prP} ⊆ B

n (called a test set). A fault
fi ∈ F is detected by P if P contains at least one test pattern that detects fi.

Let f be a fault, and let Pexh be the exhaustive test set, i.e. the set that comprises all
2n test patterns. If Pexh detects f , f is called a detectable fault. Faults that are not
detectable (i.e. no test pattern that detects them exists) are called undetectable or
redundant faults.

Two faults f1 and f2 are called equivalent if and only if ϕf1
C = ϕ

f2
C . 'at means, if f1

and f2 are equivalent, then all patterns that detect f1 also detect f2 and vice versa.

'e fault coverage is a measure to grade the quality of a test set. In its most general
form, it is de&ned by

fault coverage of a test set P =
number of faults P detects

number of faults de&ned by fault model
⋅ 100%.

'is section closes with the de&nition of two important terms that are o6en used
in this thesis and that shall not be confused with each other — fault activation
and fault excitation. A fault is said to be excited by a test pattern p if p satis&es the
conditions that allow a fault e*ect to become visible at the fault site. Fault excitation
is a necessary condition for fault detection. For instance, a stuck-at-1 fault is excited
if p induces the value 0 on the fault site. In contrast, if p induces the value 1 on
the fault site, the presence of the fault cannot be detected as the induced fault-free
behaviour does not di*er from the faulty behaviour.

'e term “fault activation” is used in the context of conditional fault models which
de&ne that a number of victim lines display erroneous behaviour only if a number of
aggressor lines satisfy certain conditions. One such model is the CMS@ fault model
which will be introduced in detail in Section 4.2. A fault is said to be activated by a
test pattern p if p satis&es the conditions on the aggressor lines which are necessary
to incite the victim lines to faulty behaviour. Note that a test pattern can activate
and yet not excite a fault.

24

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

2.4.2 Test application

Figure 8 illustrates the basic test application scheme. 'e automatic test equip-
ment (ATE) has a memory module in which the test set (obtained by test-pattern-
generation algorithms, see Section 2.7) and the expected fault-free responses (ob-
tained by simulation, see Section 2.6) are stored prior to the test start. 'en, the
ATE applies every test pattern to each actual manufactured circuit (circuit under test
—CUT) and compares the expected fault-free response to the response produced
by the CUT. If a di*erence is observed, the CUT is identi&ed as faulty.

In addition to the test application, also diagnosis can be applied to the CUT.
Diagnosis is the process of locating the physical defect that caused the observed
erroneous behaviour. In a printed circuit board, for instance, chips identi&ed as
faulty can be replaced and open lines or shorts between pins can be repaired via
resoldering. In contrast, digital VLSI chips are usually unrepairable, but diagnosis
can be performed on a sample of faulty chips in order to determine the root causes
behind common failures or performance problems. Knowledge about the causes
can be used to modify one or more steps of the design or fabrication process such
as to increase the production yield or the performance of the fabricated chips. 'e
logic diagnosis of failed chips consists in analysing the faulty responses. One type
of analysis methods uses fault dictionaries, i.e. a mapping between faulty responses
and the sets of faults that can cause each of the responses. For more information,
see e.g. [129].

CUT

expected

responses

test

patterns

memory

ATE

test pattern application

responses back to ATE

for comparison

Figure 8. Test application

25

2.4. TEST APPLICATION AND FAULT COVERAGE

2.4.3 Two-pattern testing

Testing for delay faults requires two-pattern testing, i.e. the application of two suc-
cessive test patterns (a test pair) to the CUT. Given a test pair p, the &rst pattern
(initialisation pattern) is denoted by p(1) and the second pattern (propagation pat-
tern) is denoted by p(2). p(1) brings the CUT into a known and stable state. p(2)

excites the fault and propagates the fault e*ect to a circuit output by inducing a
rising or falling transition at one or more inputs of the CUT. Assuming that p(2) is
applied at time t, the circuit is defect-free if its internal state (5ip-5op contents) and
its outputs comply with the speci&cation at time t + Tclk.

For example, a test pair pmust meet the following conditions in order to detect a
slow-to-rise GDF at a gate g:

▸ p(1) must induce the logic value 0 on g’s output.

▸ p(2) must induce the logic value 1 on g’s output, thus launching a rising
transition at the fault site.

▸ Both p(1) and p(2) must sensitise a path from the fault site to a circuit output,
thus making the fault e*ect observable.

A path is said to be sensitised by a test pair p if the application of p induces a
rising or a falling transition on the output of all gates that belong to the path. In
order for a path to be sensitised by p, pmust induce speci&c values on the o*-path
inputs of each multiple-input gate that belongs to the path. Which values are to be
induced is determined by the used sensitisation condition and in5uences the quality
of the test pair p with respect to the probability that it detects the fault if another
delay defect is present simultaneously. Several authors have de&ned alternative
sensitisation conditions, which has resulted in a hierarchy that includes hazard-free
robust, robust, strong non-robust, weak non-robust, and functional sensitisation [129,
196, 207]. Hazard-free robust sensitisation requires that all o*-path inputs of each
gate g that belongs to the path have stable ncv(g)-values during the application
of p(1) and p(2). 'is sensitisation condition results in a test of highest quality, as
the test is guaranteed to detect the fault independently of other delay defects that
may occur simultaneously. However, guaranteeing signal stability on all o*-path
inputs imposes speci&c conditions on a large amount of signals, thus reducing the
probability that a test pair with such a property exists. 'e next-weaker sensitisation
condition is robust sensitisation which requires that p(1) and p(2) both induce the
value ncv(g) on every o*-path input of each gate g, but which allows instabilities in
form of short temporal signal changes on these lines. 'e next type of sensitisation,
strong non-robust sensitisation, is even weaker, as it only requires that each o*-path

26

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

input eventually stabilises to ncv(g) in order to ensure the propagation of the fault
e*ect under the application of p(2), but no conditions are imposed on p(1) regarding
the values induced on o*-path inputs. Hence, such a test pair is easier to &nd, but
the test can be invalidated if other delay defects are present simultaneously. Finally,
weak non-robust and functional sensitisation even relax the conditions imposed
on on-path lines, but these types of sensitisation are not further considered in this
thesis.

'e practical application of two-pattern tests to combinational circuits represents no
additional challenge as compared to single-pattern tests. In contrast, the application
of two-pattern tests to sequential circuits is considerably more di2cult. In the most
general case, the secondary inputs and secondary outputs of a sequential circuit
are not externally accessible, which may prevent secondary inputs from adopting
necessary values, i.e. values that are required to sensitise the path or to induce
the proper transition at the fault site. In addition, if the fault e*ect can only be
propagated to a secondary output, the fault e*ect becomes unobservable.

'e standard approach to allow the application of two-pattern testing to sequential
circuits is scan design3. Figure 9 illustrates the principle of scan design. A sequen-
tial circuit is given two additional primary inputs scanin and scanenable, and one
additional primary output scanout. Additional multiplexers are introduced in order
to control the way in which the 5ip-5ops are utilised. When scanenable is inactive
(i.e. scanenable = 0), themultiplexers are switched such that the combinational core’s
secondary outputs are connected to the 5ip-5op inputs and the 5ip-5op outputs
to the core’s secondary inputs, which makes the circuit operate in normal mode.
When scanenable is activated, the 5ip-5ops form a shi6 register called the scan
chain. 'en, arbitrary values can be shi6ed into the 5ip-5ops via scanin, while their
content can be shi6ed out over scanout.

When all 5ip-5ops are part of the scan chain (full scan), applying arbitrary initial-
isation patterns is possible. However, since the two patterns of a test pair have to be
applied in consecutive clock cycles, it is not possible to apply arbitrary propagation
patterns. Several solutions have been proposed in order to address this issue. 'e
most important solutions are enhanced scan [63], skewed-load testing (also called
launch-on-shi") [214] and broad-side testing (also called launch-on-capture) [215].

Enhanced scan uses special 5ip-5ops that allow to shi6 in arbitrary values for the
propagation pattern. In this case, test pattern generation can be easily done by
treating the secondary inputs and outputs like primary ones. But the hardware

3Design for test (DFT) stands for a number of techniques that modify the circuit’s design in order
to facilitate the test of the manufactured circuit. Scan design is the most important DFT technique.

27

2.4. TEST APPLICATION AND FAULT COVERAGE

combinational

core

�

�

scanout

�

�

scaninscanenable

Figure 9. Scan design

overhead of this technique is very high. In skewed-load testing, the propagation
pattern is obtained by shi6ing the initialisation pattern by one position; and in
broad-side testing, the 5ip-5op contents a6er the application of the initialisation
pattern serve as the propagation pattern. In these two cases, test generation has to
consider the constraints that relate the propagation pattern to either the initialisation
pattern or to the circuit’s response. 'is usually makes the test generation problem
instances harder to solve.

28

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

2.5 Resistive fault models

Defects that a*ect the interconnections of components are usually modelled as
opens and shorts. While opens correspond to broken lines, shorts are formed by
connecting lines not intended to be connected. 'e logical fault that represents a
short between internal lines of the circuit is called a bridging fault. 'e two most
simple types of bridging fault models are and bridges and or bridges. 'e former
assumes that if two lines l1 and l2 driven by logical values v1 and v2, respectively, are
bridged, then both lines adopt the value v1 ⋅ v2, i.e. the line with a 0-value dominates
the other line; the latter model assumes that both lines adopt the value v1+v2, i.e. the
line with a 1-value dominates the other line [12].

However, these two bridging models are too simple to re5ect the behaviour of
realistic short defects. Hence, more advanced fault models have been proposed [15,
23, 85, 84, 167, 195], but these modelling approaches disregard the fact that a
substantial fraction of short defects are resistive [200] and assume a resistance of
0Ω. 'e reason for this simpli&cation is that the resistance of a bridge is a continuous
parameter that is not known in advance and cannot be predicted as it depends on
highly variable characteristics of the particle causing the short, like its size, shape,
conductivity and exact location. Furthermore, the actual resistance of a resistive
bridge in5uences the behaviour of the defect. For instance, a defect that can be
detected by a given test pattern may remain undetected by the same pattern in a
di*erent circuit instance in which the resistance is di*erent. Hence, in order to
perform realistic test generation and fault simulation for resistive-bridging faults
(RBF), the concepts of detectability, undetectability and fault coverage need to be
adapted when non-zero resistances are modelled [179].

A solution to this problem was presented by Renovell et al. [198, 199, 197], who
introduced the concept of analogue detectability intervals (ADI). For each RBF f
and each test pattern p, an ADI [R1,R2] is de&ned such that p is guaranteed to
detect f if and only if R1 ≤ R ≤ R2, where R is the actual resistance of the bridge.
Hence, the detectability of f is de&ned individually for each test pattern that detects
f for a given resistance interval, and the overall detection probability of f can be
computed taking into account the probability distribution for the resistance R and
f ’s detectability for each of its ADIs.

'e analysis that is performed in order to determine a given RBF’s ADIs is explained
here by means of an example. Figure 10 (a) shows an example RBF that bridges two
nodes a and b, which are the output of the nand gate g and the output of the nor
gate h, respectively. 'e fault is excited by imposing opposite logic values on a and
b, for instance by applying the value 0 to both inputs of gate g, and the value 1 to

29

2.5. RESISTIVE FAULT MODELS

g

h
m

�

R

� �� (�)

�

�

ka

b

(a) an example RBF

V

ϑ
k

ϑ
m

V
a

V
b

����������������������R
k
������������� �� �R

k
 � ���R'

R
m
���������������R

m
�'�

V
a
 '

V
b
 '

R
act

(b) corresponding detectability intervals

Figure 10. Analogue detectability intervals of resistive bridging faults

both inputs of gate h. In absence of the bridge, these input values lead to logic 1 on
a and logic 0 on b.

In presence of the bridge, the voltages Va and Vb measured on nodes a and b,
respectively, depend on the bridge’s resistance R. For R = 0Ω, there is some inter-
mediate identical voltage on both lines. For R =∞, Va equals VDD and Vb equals
0V, as if the bridge were not present. 'e solid curves in Figure 10 (b) depict a
possible distribution of Va and Vb. 'e abscissa corresponds to di*erent values of
R, while the ordinate represents the voltages Va and Vb that are on nodes a and b
for di*erent values of R. 'e curves for Va and Vb diverge for growing values of R,
and Va approaches VDD while Vb approaches 0.

In order to carry out test generation and simulation for this fault, it is necessary
to determine how the voltages Va and Vb are interpreted by the inputs of the gates
k andm, which are driven by a and b, respectively. 'e model assumes that each

30

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

gate input has a threshold ϑ ∈ [0,VDD], such that voltages between 0V and ϑ are
interpreted as logic 0, while voltages between ϑ and VDD are interpreted as logic
1. 'e threshold depends on several factors like the gate type and the capacitive
load on the driven line; thus, usually each input of each gate has an own but exactly
de&ned threshold. In this example, the input of gate k which is driven by gate g has
the threshold ϑk, which is the voltage present on node a if the resistance R of the
bridge equals Rk. Rk is called a critical resistance because gate k interprets the voltage
Va as logic 0 if R < Rk or as logic 1 if R > Rk. Hence, the bridge induces a wrong logic
value on the input of k for R < Rk, while the fault remains undetected by k if the
bridge’s resistance is greater than Rk. At the same time, there is a critical resistance
Rm (for which Vb = ϑm) such that the input ofm interprets a wrong logic value only
if R < Rm. 'e intuition behind this model is that a bridge with a lower resistance
allows nodes a and b to in5uence each other more strongly than a high-resistance
bridge.

Figure 10 (b) also illustrates the situation in which the pattern 01 is applied to the
inputs of gate g instead of 00. Due to the internal structure of CMOS nand gates,
the output of gate g still produces logic 1, but it will be driven with less strength,
which results in a voltage V ′a which is consistently lower than Va for all R-values.
In presence of the bridge, also the intermediate voltage that is present on both a
and b for R = 0Ω is lower than in the &rst case, which leads to a voltage V ′b which
is consistently lower than Vb. 'e voltages V ′a and V ′b are represented by dashed
curves. As can be seen in the diagram, the application of pattern 01 to gate g’s inputs
results in new critical resistances R′k and R′m that di*er from Rk and Rm.

Assume that the bridge’s resistance equals Ract in an actual circuit’s instance, and
that Rk < Ract < Rm (see Figure 10 (b)). 'en, the input of k driven by g retains its
fault-free behaviour (i.e. it interprets Va as logic 1) while the input ofm driven by
h displays faulty behaviour (i.e. it interprets Vb as logic 1) under the application
of 0011 to g and h. Under the application of 0111, the situation is inverted (then,
R′m < Ract < R

′

k): the input of k becomes fault-a*ected and the input ofm remains
fault-free. 'is shows that the same physical defect can behave di*erently at the
logic level depending on the applied test pattern.

Di*erent test generation and fault simulation tools based on this model have been
developed at the University of Freiburg [183, 184, 75, 76, 78, 77, 74]. Detailed
information can be also found in [179]. In addition, a similar model was also
used by the author of this thesis in order to compute the realistic fault coverage of
small-delay faults caused by resistive-open defects [51]. In that work, exact timing
simulation is performed in order to determine detectability intervals in the timing
domain, i.e. for each delay fault f and each test pair p, the algorithm determines

31

2.6. FAULT SIMULATION

the exact intervals within which the actual delay of the defect must lie in order to
guarantee the detection of f by p. 'en, the determined intervals in the timing
domain are mapped to detectability intervals in the resistance domain, and the
fault’s overall detection probability is determined in function of the probability
distribution of the open’s resistance.

2.6 Fault simulation

Logic simulation is the process of determining the logic values implied on each
circuit line by the application of an input pattern to the circuit.

Given a combinational circuit, the zero-delay logic simulation of an input pattern
p ∶= b1⋯bn ∈ Bn assigns each bit bi of the pattern to the corresponding primary
input and computes the new logic value implied on each line, where the lines are
processed in topological order. 'ese steps are repeated for every pattern to be
simulated.

A standard technique to reduce the run-time of a simulation algorithm is called
event-driven simulation. Given a set of patterns P ∶= {p1, . . . ,prP}, the &rst pattern
is simulated as usual. For i = 2, . . . , rP, values are assigned to each circuit input
according to pi. If an input’s new value di*ers from its old value, all that input’s
successor gates are inserted into a priority queue that orders the contained gates
topologically. 'en, it su2ces to recompute the logic values of the signals that are in
the queue. If the value of a line taken from the queue changes, that line’s successors
have to be inserted into the queue as well. 'ese steps are repeated until the queue
becomes empty.

Fault simulation is the process of determining the set of faults that are detected by a
given test set. Two important applications of fault simulation are the computation
of fault coverage, and the combination with test pattern generation in order to
avoid the generation of tests for faults that can be detected by already generated test
patterns.

Algorithm 1 describes a simple fault simulation method that is independent of the
used fault model. Here, Cf stands for the faulty version of the circuit when it is

a*ected by fault f , bl stands for the logic value on a line l and b
f

l stands for the logic
value on a line l in the faulty circuit.

'e fault-free simulation of a test pattern p (line 4) consists in determining the
logic values that stabilise on every line of the fault-free circuit a6er applying p to

32

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

Algorithm 1

Simple fault simulation

Inputs: circuit C, fault list F, test set P
Output: list of detected faults F′

1: simple-fault-simulation(C,F,P) {

2: F′ ∶= ∅
3: for each test p ∈ P do {

4: simulation(C, p) ▷ fault-free simulation
5: record computed logic value bz for every circuit output z
6: for each fault f ∈ F do {

7: simulation(Cf , p) ▷ faulty-case simulation

8: if bz ≠ b
f
z for any circuit output z then { ▷ if p detects f

9: move f from F to F′

10: }

11: }

12: }

13: return F′

14: }

its inputs. 'e implementation is fault-model-dependent. In the case of the SAFM,
this simulation would correspond to the logic simulation introduced above.

Faulty-case simulation of a test pattern p (line 7) is the process of determining the
logic values that stabilise on every line of the circuit when it is a*ected by a fault f .
Usually, faulty-circuit simulation is performed using the same algorithm as for the
fault-free simulation, where the fault e*ect is injected at the fault site and propagated
to the circuit outputs in an event-driven manner.

Note that, in line 9, the detected fault f is not only copied to the output fault list,
but also removed from the input fault list. 'is is done in order to avoid the unne-
cessary repeated simulation of a fault that has already been classi&ed as detected.
However, this is only valid when the fault model distinguishes solely between either
undetected and fully detected faults. As was explained in Section 2.5, the de&ni-
tion of detectability is more complex for certain fault models like resistive-bridging
faults or resistive opens. For instance, in [51], the detection probability of each
fault is computed depending on the probability distribution for the resistance of the
corresponding resistive-open defect and depending on what resistance intervals
are covered by each test pattern. In such cases, every fault needs to be simulated
for every test, as the detection probability of a fault is in general di*erent for each
pattern that detects it, and the overall detection probability results from the accu-
mulated detection probabilities computed for di*erent tests.

33

2.7. TEST PATTERN GENERATION

'ere are several forms of advanced fault simulation aimed at improving the run-
time. 'ese include deductive fault simulation [18], concurrent fault simulation [248],
critical-path tracing [14] and parallel-pattern single-fault propagation (PPSFP) [249].
PPSFP is a method that simulates n test patterns concurrently. 'e logic values of
each line under n di*erent test patterns are stored in n-bit words. 'en, for the eval-
uation of a logic gate, Boolean instructions are applied to the n-bit operands, which
generates output values for all n patterns in parallel. Obviously, the combination of
parallel-pattern and event-driven simulation is not trivial, because eventsmay occur
only for some of the n patterns being simulated in parallel, but implementations of
event-driven PPSFP simulators with a good speed-up exist [73].

2.7 Test pattern generation

Automatic test pattern generation (ATPG) is the process of deciding whether a fault
f is detectable, and of computing a test pattern that detects f if that is the case.
Although the fault detection problem for combinational circuits is NP-complete
[128], the average complexity of most ATPG instances found in practice is only
O(n3) [256, 189]. However, ATPG still remains one of the most challenging test
tasks, especially due to the large number of instances that usually need to be con-
sidered. For example, in mid-sized industrial circuits with half a million gates,
millions of stuck-at faults may need to be targeted depending on the average num-
ber of branches per fan-out node. In order to overcome the problem’s complexity,
test pattern generation is usually combined with fault simulation. A6er the genera-
tion of a certain number of tests, these are simulated in order to determine which
not yet targeted faults are also detected by them. Faults detected by simulation can
be removed from the target fault list, thus reducing the number of test generation
instances to be solved. 'is technique is known as fault dropping. Another positive
e*ect of fault dropping is the reduction of pattern count, which is of concern be-
cause the cost of test application depends strongly on the number of test patterns
to be applied. In order to further reduce the number of generated tests without loss
of fault coverage, test compaction techniques are also usually employed.

Typically, test generation processes consist of the following phases:

1. low-cost, fault-independent test generation,

2. fast identi&cation of undetectable faults,

3. high-cost, deterministic, fault-oriented test generation,

4. static test compaction.

34

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

In Phase 1, usually random test patterns are generated and simulated in an iterat-
ive process that stops when adding more random patterns to the test set does not
signi&cantly improve the fault coverage. In Phase 2, undetectable faults are identi-
&ed, e.g. through the analysis of regions between fan-out nodes and reconvergent
gates [173, 172], and removed from the fault list. However, the employed algorithms
are usually not complete because they are meant to be fast and low-cost, while the
problem of identifying undetectable faults is co-NP-complete4. In Phase 3, still
undetected faults are targeted by a deterministic test generation algorithm. In order
to reduce the number of generated patterns, this algorithm may include dynamic
compaction techniques, i.e. techniques that guide the test search such that each
generated test is suitable for the detection of a higher number of faults. Finally, in
Phase 4, static compaction techniques are applied in order to further reduce the size
of the generated test set without loss of fault coverage.

2.7.1 Structural test pattern generation for stuck-at faults

In this section, deterministic ATPG algorithms for stuck-at faults in combinational
circuits are presented. 'e focus is put on structural algorithms, as these are the
&rst kind of ATPG algorithms to have arisen, and since they continue to be the base
of ATPG tools used in industry. Structural means that these algorithms search for a
solution based solely on the circuit’s structure, i.e. the reasoning required to guide
the search is derived directly from the gate-level net list.

'e &rst steps in structural testing of logic circuits weremade by Eldred in 1959 [72],
but it was Roth’s work at IBM which resulted in the &rst systematic ATPG method
— the D-Algorithm [201, 202]. 'e algorithm allows multiple-path sensitisation,
i.e. fault e*ects can be propagated over several reconvergent paths. 'is is an im-
portant feature, as there are faults that cannot be detected using only single-path
sensitisation [216]. In fact, the D-Algorithm is complete, i.e. it is guaranteed to
&nd a solution (a test pattern) if the given fault is detectable, or to prove the fault’s
undetectability.

Algorithm 2 describes a D-Algorithm version that gives propagation priority over
justi&cation. However, this assumption does not alter the algorithm’s complete-
ness [12]. 'e algorithm uses a &ve-valued logic known as Roth’s logic (Table 2).
'e values in this logic are composite values that represent a line’s logic value in the

4'is topic is not relevant to this thesis and will not be explained in more detail. See [12, 34, 129]
for more information.

35

2.7. TEST PATTERN GENERATION

Algorithm 2

The D-Algorithm

Inputs: circuit C, fault f
Output: returns detectable if f is detectable, otherwise undetectable
1: D-Algorithm(C, f) {

2: set all circuit lines to x
3: if f is a s-a-0 fault then {

4: assign D to the fault location ▷ excite the fault
5: } else {

6: assign D′ to the fault location ▷ excite the fault
7: }

8: return proceed-search()
9: }

10: proceed-search() {

11: if imply-and-check() fails then {

12: return undetectable
13: }

14: if no primary output produces an error then {

15: return propagate()
16: } else {

17: return justify()
18: }

19: }

Table 2

Roth’s logic [202]

meaning

value fault-free case faulty case

0 0 0
1 1 1
x x x
D 1 0
D′ 0 1

36

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

D-frontier = {�g�}

D

g

x

x

←�

D→

step �

D

g

�

D→
D

g

←�

�→

step � step �

x

x

x

x

Figure 11. D-Algorithm — an example chain of implications

fault-free and in the faulty case. Logic operations on these values are computed by
applying the operations separately to the fault-free and faulty components and by
composing the results. 'e value x (unspeci!ed) is used to represent lines that have
not yet been assigned a value by the algorithm, while the values D and D′ represent
errors.

First, the algorithm assigns an error value to the fault site depending on whether
the fault is a stuck-at-0 or a stuck-at-1 fault. 'en, the algorithm calls a recursive
search function (line 8) that performs two basic tasks, propagation and justi!cation.
Propagation consists in driving the fault e*ect towards the primary outputs and
is stopped as soon as an error can be observed on at least one primary output.
Justi&cation is a process that justi!es values on gate outputs by values on the gate’s
inputs, i.e. the gate’s inputs are set such that the gate produces the desired value at
its output. Two data structures are used to manage propagation and justi&cation.
'eD-frontier contains all gates through which propagation can be driven, i.e. gates
whose output cannot be inferred from the current assignments, but with at least
one D or D′-input. 'e J-frontier contains all gates with a speci&ed output value,
but where the current assignment of its inputs does not logically imply the value at
the gate’s output.

'e recursive search function &rst calls the imply-and-check-function (line 11),
which computes all implications that can be deduced from current assignments
without making any decisions. An example chain of implications is shown in Fig-
ure 11. 'e example assumes that gate g is the only gate in the D-frontier. 'en,
the need to propagate the D-value at g’s &rst input implies that g’s output has to
be set to D and that that value has to be propagated, for which g’s successor gate
has to be added to the D-frontier (not shown in the picture). 'e D-values at g’s
&rst input and at g’s output imply a 1-value (the non-controlling value of g) at g’s
second input and the need to justify that value (step 2). 'is justi&cation task im-
plies further propagation and justi&cation tasks along the stem and second branch

37

2.7. TEST PATTERN GENERATION

Algorithm 3

Sub-routines of the D-Algorithm

1: propagate() {

2: if D-frontier is empty then { ▷ no further propagation posssible
3: return undetectable
4: }

5: while D-frontier is not empty do {

6: select a gate g from D-frontier ▷ decision
7: assign ncv(g) to every unspeci&ed input of g ▷ sensitisation condition
8: if proceed-search() returns detectable then {

9: return detectable
10: } else {

11: undo last assignments ▷ backtracking
12: }

13: }

14: return undetectable ▷ no further propagation posssible
15: }

16: justify() {

17: if J-frontier is empty then { ▷ all justi&cation tasks have been satis&ed
18: return detectable
19: }

20: take a gate g from J-frontier
21: while g has unspeci&ed inputs do {

22: select an unspeci&ed input i of g ▷ decision
23: assign cv(g) to i
24: if proceed-search() returns detectable then {

25: return detectable
26: } else {

27: assign ncv(g) to i ▷ backtracking
28: }

29: }

30: return undetectable ▷ justi&cation of g failed
31: }

of that fan-out node (step 3). 'e imply-and-check-function fails if the current
assignments result in con5icting implications, for instance if a value is implied on a
line that has been previously assigned a di*erent speci&ed value.

A6er calling the imply-and-check-function, the main search function either calls
the propagation or the justi&cation sub-routine (Algorithm 3), whichmake propaga-
tion or justi&cation decisions and recursively call the main search function.

Propagation consists in selecting a gate from the D-frontier and setting its unspe-
ci&ed inputs to the gate’s non-controlling value in order to sensitise the gate to the

38

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

fault e*ect. Since it su2ces to observe a fault e*ect on only one primary input,
usually not all gates in the D-frontier need to be processed, and the selection of a
speci&c gate can result in a con5ict. Backtracking is implemented by the while loop
(line 5). If the recursive search call within the loop is unsuccessful, a new run of the
while loop tries a di*erent propagation path. Propagation fails when the D-frontier
becomes empty and the fault e*ect is still not visible at a primary output.

Justi&cation consists in justifying the values of the gates in the J-frontier. In contrast
to the D-frontier, all gates in the J-frontier need to be processed, as all justi&cation
tasks are necessary to satisfy the propagation conditions. 'e only case in which
the justi&cation procedure needs to make a selection is when justifying a gate’s
controlling value (non-controlling value if the gate is inverting). In this case, it
su2ces to set only one input of the gate to its controlling value, while all other
inputs may remain unspeci&ed. If the recursive search call is unsuccessful, a new
run of the while loop (line 21) tries a di*erent input of the gate. Justi&cation fails
if no input of the gate can be set to the gate’s controlling value, thus making it
impossible to justify the gate’s output value.

Two important ATPG algorithms that can be seen as derivatives of the D-Algorithm
are PODEM (Path-Oriented Decision Making) [98] and FAN (Fan-out Oriented
Test Generation) [89, 87]. In PODEM, decision making is restricted to the primary
inputs, thus reducing the complexity of the algorithm toO(2number of PIs), whereas
the D-Algorithm’s worst-case complexity isO(2number of lines). PODEM de&nes ob-
jectives (justi&cation tasks) to be satis&ed. 'e &rst objective is given by the fault ex-
citation condition. Further objectives are dictated by the sensitisation of gates in the
D-frontier. A fast backtracing procedure [233] is used to select a PI assignment
likely to imply the currently targeted objective. If the implications that follow from
that assignment lead to no con5ict, the next objective can be targeted in the same
manner, and the algorithm continues to target objectives until a fault e*ect is visible
at a primary output. If the assignment to a PI leads to a con5ict, &rst that assign-
ment is reverted (backtracking). However, if the reverted assignment leads to a new
con5ict, also previously made assignments need to be reverted. If no backtracking
is possible any more, the fault is classi&ed as undetectable.

FAN is an extension of PODEM that further improves the e2ciency of structural
ATPG. In contrast to PODEM, FAN allows backtracing to stop at head lines. Head
lines are de&ned such that the sub-circuits driving them are fan-out-free. Hence,
values on head lines can be justi&ed without con5icting with values previously as-
signed to other lines in the circuit. 'us, the need for backtracking is considerably
reduced, and FAN is signi&cantly more e2cient than PODEM [89]. In addition,
FAN uses amultiple-backtrace procedure that attempts to satisfy several objectives

39

2.7. TEST PATTERN GENERATION

simultaneously. Some structural algorithms implemented in commercial and pro-
prietary ATPG tools are known to be based on FAN which is an e2cient algorithm
able to solve a large number of easy-to-solve ATPG instances very fast.

Most proposed enhancements of these basic ATPG algorithms [140, 218, 93, 159,
250, 108] are structural as well and rely on learning techniques in order to improve
the performance of structural ATPG on hard-to-solve ATPG instances.

2.7.2 Compaction

Test compaction is the process of reducing the size of a test set without a*ecting
the fault coverage achieved by it, thus diminishing both test application time and
tester memory demand, and hence the total test application cost. Two types of
compaction algorithms are known: static and dynamic techniques.

Static compaction acts on a previously generated test set and produces a smaller test
set that detects at least the same faults as the original one. Some static compaction
methods identify redundant test patterns using fault-simulation-basedmethods that
are especially e*ective when applied to test sets containing only deterministically
generated test patterns. For instance, reverse-order fault simulation (ROFS) [12]
consists in simulating the generated test patterns in the reverse order in which they
were generated. Test patterns that detect no new faults when they are simulated are
dropped from the test set. A6er reverse-order fault simulation, also random-order
fault simulation can be applied a number of times in order to further reduce the
pattern count.

Forward-looking reverse-order fault simulation (FLROFS) [187] is an extension of
ROFS. 'is method records which test pattern was the &rst to detect which fault.
Since these data can be collected during the test generation process, the collec-
tion causes no signi&cant overhead. A6er the test generation, normal ROFS is
performed, but test patterns that have not been recorded as the &rst to detect any
of the remaining faults can be dropped from the test set without simulation, as the
test set is guaranteed to contain not yet simulated test patterns that detect those
faults, namely their corresponding &rst test patterns. 'is method not only leads
to smaller pattern counts than simple ROFS, but it also requires fewer simulation
runs.

A further static compaction method merges pairs of test patterns into new patterns
that detect at least the same faults as the original patterns. Merging is possible due to
the fact that many circuit inputs are not assigned a speci&c logic value by the ATPG
algorithm. Two partially speci!ed test patterns p1 ∶= b1,1⋯b1,n and p2 ∶= b2,1⋯b2,n,

40

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

bi,j ∈ {0, 1, x}, are compatible if they do not assign contradicting values to any
primary input, i.e. if for all j = 1, . . .n, either b1,j = x or b2,j = x or b1,j = b2,j. If p1
and p2 are compatible, they can be merged into a new test pattern p1 ∩ p2, where
the intersection operator ∩ is de&ned as in Table 3. For instance, the intersection of
01xx and 0x10 is 0110. Obviously, all faults detected by p1 and by p2 are detected
by p1 ∩ p2 as well. Hence, p1 and p2 can be replaced by only one new test pattern
p1 ∩ p2.

Table 3

The intersection operator

∩ 0 1 x
0 0 - 0
1 - 1 1
x 0 1 x

Given a test set P, pairs of compatible tests in P are subsequently identi&ed and
replaced by their intersection until no further compaction can be achieved. 'e
obtained compacted test set depends on the order in which the test patterns are
merged. For example (taken from [12]), consider the test set {01x, 0x1, 0x0, x01}.
If the &rst two tests are merged &rst, the set {011, 0x0, x01} is obtained which
cannot be compacted any further. In contrast, merging the &rst and the third test
patterns &rst renders the test set {010, 0x1, x01}, which can be further compacted to
{010, 001}. However, &nding the optimal compaction is computationally complex.
An optimal solution can be found by constructing a compatibility graph, i.e. an
undirected graph where the nodes represent the test patterns and the edges connect
compatible tests. 'en, all cliques5 contained in the graph represent sets of test
patterns that are all compatible to each other and can thus bemerged into one single
test pattern. 'e optimal solution is found by covering the compatibility graph using
a minimum number of cliques, which is an NP-complete problem [135].

For this reason, most static compaction algorithms have to rely on heuristic tech-
niques for fault reordering and test relaxation [133, 71], i.e. the post-ATPG injec-
tion of x-values into the generated test patterns, a technique which is also widely
employed to aid test compression for built-in self-test or for test of systems-on-a-
chip [71].

In contrast to static compaction, which is always applied a6er the ATPG process has
been completed and is independent of the usedATPGmethod, dynamic compaction

5A clique is a graph in which every two nodes are connected by an edge.

41

2.7. TEST PATTERN GENERATION

encompasses techniques that modify the ATPG algorithm such that each generated
test pattern is suitable for the detection of a higher number of faults.

'e generic approach [99] consists in generating a test pattern p1 for a primary
target fault f1. 'en, a secondary target fault f2 is chosen, and a test pattern p2 is
generated for f2 under the condition that the circuit inputs assigned to speci&ed
values by p1 be assigned to the same values by p2. Hence, if p2 exists, it detects both
f1 and f2 and p1 can be dismissed. 'is process can be repeated for further secondary
targets until the percentage of unspeci&ed values in the test pattern is too low to
allow the consideration of more targets.

Obviously, the most relevant problem is the selection of secondary target faults.
Similarly to the selection ofmerging pairs in static compaction, the optimal selection
of secondary target faults would be computationally too expensive. Hence, the
selection relies on heuristicmethods. For instance, the partially speci&ed test pattern
that has been generated for the primary fault can be simulated using normal fault
simulation or faster algorithms like critical-path tracing [14], which is usually done
in any case for the purpose of fault dropping. 'e values this simulation process
implies on lines in the whole circuit are then analysed in order to determine what
secondary fault is more likely to be detected by a pattern that respects these value
assignments [100, 101, 13].

'e pattern counts achieved by the tool COMPACTEST [185] for the iscas’85 [32]
and iscas’89 [31] benchmark circuits are among the lowest ever recorded. 'e tool
combines pre-ATPG fault reordering based on the concept of independent faults [17]
with a more aggressive approach that allows to modify speci&ed primary-input as-
signments. Also, the objectives of line justi&cation can be changed dynamically
to allow di*erent faults to be potentially detected. However, the large number of
heuristic methods used in this work makes it hard to predict the tool’s perform-
ance on newer benchmark circuits, like itc’99 [7, 48] or nxp (see Appendix A)
circuits. 'e methods implemented in COMPACTEST were also combined with
static compaction and further heuristic techniques in [134].

An alternative type of approachwas presented in [170]. 'e subscriptedD-Algorithm
attempts to sensitise multiple paths simultaneously, thus generating a single pattern
that detects many faults. However, this approach uses a system that consists of a
5exible observation signal assigned to a gate’s output, and of 5exible control signals
assigned to all gate inputs. 'emultiplicity of these 5exible signals causes new types
of con5icts that require heuristic handling [146].

Further techniques that di*er from the general approach were presented in [20]
and [203]. In [20], instead of extending a new generated test pattern, it is merged

42

2. INTRODUCTION TO THE TEST OF DIGITAL CIRCUITS

with a previously generated test pattern compatible to it, if one exists. 'us, the
necessity to select secondary target faults is eliminated. However, like in static
compaction, the selection of a previously generated pattern has a strong in5uence
on the &nal result. In [203], the &lling of unspeci&ed bits in the generated test
patterns is done employing a genetic algorithm6.

6Genetic algorithms belong to the class of evolutionary algorithms [36, 102], which are heuristic
search methods that mimic the process of natural evolution. Candidate solutions (represented by
character strings) are the individuals of a population. 'e population evolves in an iterative process
that consists in generating new individuals (derived from existing individuals by applying opera-
tions like mutation or crossover) and in selecting which individuals will form the next generation
according to a &tness function that best represents the optimisation objective of the search. Evol-
utionary algorithms have been employed in many areas of VLSI design and test [66], including
ATPG [94, 137], BIST con&guration [263, 180] and test data compression [181].

43

2.7. TEST PATTERN GENERATION

44

3

Introduction to the SAT problem

and to SAT-based ATPG

'is chapter introduces the SAT problem, which is the problem of deciding whether
the variables of a Boolean formula can be assigned such that the formula evaluates to
logic 1. A6er a formal introduction of the SAT problem, the chapter presents basic
algorithms for the solution of this problem, as well as themost important techniques
used by modern SAT solving tools. 'e second part of this chapter focuses on the
application of SAT solving to test pattern generation. A6er the introduction of
the basic principle, a review of previously existing works on SAT-based ATPG is
given, as well as of related ATPG approaches. Like Chapter 2, this is an introductory
chapter. Hence, all its contents constitute pre-existing knowledge originated in the
work of other authors, and references to the original works have been added where
appropriate.

3.1 Introduction

'e Boolean satis!ability problem (SAT) is the problem of deciding whether a
Boolean formula is satis!able, i.e. whether its variables can be assigned the values 0
or 1 such that the whole formula evaluates to 1. So6ware tools used to determine
the satis&ability of SAT formulae are called SAT solvers.

Currently, SAT solvers are used in many &elds like planning [136, 96], electronic
design automation [166], and veri&cation and test of digital systems [219, 27, 46,
224, 114, 77, 164, 69, 55, 209, 207], especially because many search problems can
be converted into SAT problems e2ciently [151].

45

3.1. INTRODUCTION

'e SAT problem is NP-complete [47], which means that there is currently no
known method to solve an arbitrary instance of the SAT problem e2ciently. How-
ever, many problems found in practice result in SAT formulae that are relatively
easy to solve, especially if it is possible to nest structural information of the original
problem into the SAT problem [237]. 'is also applies to ATPG. Although ATPG is
NP-complete, only a relatively low percentage of ATPG instances found in practice
make ATPG algorithms display their worst-case behaviour [256, 189, 55]. How-
ever, ATPG is challenging because it has to be applied to a very large number of
instances. 'anks to techniques like incremental SAT solving, where the solving of
a SAT instance bene&ts from knowledge learnt during the solution of previous SAT
instances, ATPG can be performed e2ciently using SAT solvers.

'e &rst approaches to reduce the ATPG problem to a SAT problem were proposed
several decades ago [220, 147, 148, 237], yet structural algorithms, which perform a
direct search based on the circuit’s net list, have largely remained the standard used
in industrial applications due to their better run-times. Structural algorithms are
particularly fast when applied to a large number of easy-to-solve ATPG instances
(see also Section 2.7.1).

However, recent experiments [242, 55] have shown that SAT-based test pattern
generation (SAT-ATPG) outperforms structural methods for hard-to-solve ATPG
instances. 'ese instances are either hard-to-detect faults or undetectable faults,
for which structural algorithms tend to display their worst-case behaviour due to
the size of the search space that needs to be traversed until a solution is found or
until the nonexistence of a solution can be proved. In contrast, SAT solvers are
routinely used to prove unsatis&ability in applications such as equivalence checking
and model checking7, which has given rise to numerous techniques that allow
SAT solvers to prune large parts of the solution space e2ciently. Obviously, this
development has made SAT-ATPG more suitable than structural algorithms to
prove fault undetectability. 'ese techniques also result in an advantage of SAT-
ATPG when applied to hard-to-detect faults, for which structural methods require
a larger number of backtracks than SAT-ATPG.

7Equivalence,model and property checking are formal-veri&cation problems. Given two models
of the same system, or amodel of the system and a speci&cation, equivalence checking is the problem
of deciding whether both models are functionally equivalent. Model and property checking refers
to the problem whether a system model satis&es a certain property. For example, property checking
can be used to determine whether a sequential circuit can enter a set of desired or undesired states
as the result of the application of test sequences of a given length.

46

3. INTRODUCTION TO THE SAT PROBLEM AND TO SAT-BASED ATPG

Especially the ability to prove undetectability is an important feature of SAT-ATPG,
as modern fault modelling approaches o6en lead to a high number of undetectable
faults, while an accurate computation of defect coverage depends strongly on the
number of undetectable faults that can be reliably identi&ed as such. For instance,
the rise in importance of reliability concerns has resulted in an increased use of
redundant structures to enhance fault tolerance [227, 260] (see also Chapter 9).
Hence, a rising number of modelled faults are undetectable. In addition, many
defects in nano-scale manufacturing technologies need to be modelled using non-
standard fault models rather than the SAFM [16]. Such models usually impose very
speci&c conditions on several lines in the circuit in order to excite the fault, thus
leading to a high amount of undetectable faults. For instance, a high-resistance
short defect might require particular values at the inputs of the gates that drive the
bridged lines in order to justify the voltages that excite the fault (see Section 2.5).
Another example is the accurate modelling of interconnect-open defects, which
requires that particular values be assigned to lines that have a coupling capacitance
with the a*ected line [204, 107, 234, 116].

Given this particular strength of SAT-based ATPG, the combination of structural
methods and SAT-ATPG is an approach with expected good performance in indus-
trial settings, as shown in [242]. But SAT-ATPG has also been proved highly useful
in its own merit, especially in applications that produce many hard-to-solve ATPG
instances, like the classi&cation of faults in robust circuits with redundant checking
logic [126] (see also Section 9.3), or test generation using complex fault models that
require non-trivial constraints for fault activation [55, 57, 56] (see also Chapters 7
and 8).

3.2 Formal definition of the SAT problem

(Propositional) logic variables or Boolean variables are variables that can take either
the value 0 (false) or 1 (true). In this thesis, logic variables are denoted by upper-case
letters, usually X, if applicable followed by an index.

(Propositional) logic formulae or Boolean formulae are expressions over the set of
Boolean variables and the following symbols: {¬,∧,∨, (,)}. Boolean formulae will
be denoted by lower-case Greek letters.

Valid Boolean formulae are de&ned recursively. If X is a logic variable, then the
expressions X and ¬X are Boolean formulae. Also, if ϕ and ψ are Boolean formulae,
the following expressions are Boolean formulae as well:

47

3.2. FORMAL DEFINITION OF THE SAT PROBLEM

▸ ¬ϕ— negation,

▸ (ϕ ∧ψ)— conjunction,

▸ (ϕ ∨ψ)— disjunction.

For simplicity, pairs of round brackets in a Boolean formula can be omitted provided
that the removal does not provoke confusion. In addition, the following abbreviating
expressions are common:

▸ (ϕ⊕ψ)— exclusive disjunction—as an abbreviation of ((ϕ∧¬ψ)∨(ψ∧¬ϕ)),

▸ (ϕ→ ψ)— implication— as an abbreviation of (¬ϕ ∨ψ),

▸ (ϕ↔ ψ)— equivalence— as an abbreviation of ((ϕ→ ψ) ∧ (ψ → ϕ)),

▸ (ϕ1∨ϕ2∨ϕ3)—as an abbreviation of ((ϕ1∨ϕ2)∨ϕ3) or of (ϕ1∨(ϕ2∨ϕ3)),

▸ (ϕ1∧ϕ2∧ϕ3)—as an abbreviation of ((ϕ1∧ϕ2)∧ϕ3) or of (ϕ1∧(ϕ2∧ϕ3)).

LetX be the set of variables occurring in a formula ϕ. A logic assignment or Boolean
assignment is a map w ∶ X→ B that assigns each variable either the logic value 0 or
the logic value 1. If w(X) = 1 for a variable X ∈ X, w is said to satisfy X (written
w ⊧ X).

w can be extended to amapw∗ that evaluates the formulaϕ. w∗ is de&ned recursively
as follows:

▸ w∗(X) = w(X),

▸ w∗(¬ϕ) = ¬w∗(ϕ),

▸ w∗(ϕ ∧ψ) = w∗(ϕ) ⋅w∗(ψ),

▸ w∗(ϕ ∨ψ) = w∗(ϕ) +w∗(ψ).

A formula ϕ is called satis!able if there is an assignment w such that w∗(ϕ) = 1.
'en, w is said to be amodel of ϕ or to satisfy ϕ (written w ⊧ ϕ). 'e SAT problem
is the problem of deciding whether a formula ϕ is satis&able.

A formula that evaluates to 0 for all assignments is called unsatis!able. A formula
that evaluates to 1 for all assignments is called a tautology.

Let {X1, . . . ,Xn} be the set of variables occurring in a formula ϕ. 'en, the formula
ϕ describes the Boolean function Bn

→ B that maps (a1, . . . ,an) to w∗(ϕ) for all
assignments w with w(Xi) = ai for all i = 1, . . . ,n.

Two formulae ϕ and ψ are called semantically equivalent if w∗(ϕ) = w∗(ψ) for all
assignments w, i.e. if ϕ and ψ describe the same Boolean function.

48

3. INTRODUCTION TO THE SAT PROBLEM AND TO SAT-BASED ATPG

A formula ϕ is said to be in conjunctive normal form (CNF), if ϕ is a conjunction of
disjunctions of literals, i.e. if it has the form (λ1,1∨⋯∨λ1,n1)∧⋯∧(λm,1∨⋯∨λm,nm),
where each λi,j is a literal, i.e. λi,j is either a variable or a negated variable8. For every
Boolean formula there is a semantically equivalent formula in CNF. Hence, for
every Boolean function Bn

→ B, there is a formula in CNF that describes it.

'e conjunctions that form a CNF formula are also called clauses and regarded as
sets of literals, while the CNF formula is seen as a set of clauses. Hence, a formula in
CNF is o6en written in the form {{λ1,1, . . . ,λ1,n1}, . . . ,{λm,1, . . . ,λm,nm}}. Clauses
that consist of only one literal are called unit clauses.

An assignment w that satis&es a CNF formula ϕ has to satisfy every individual
clause in ϕ, while each clause is satis&ed if w satis&es at least one literal contained
in the clause. Hence, unit clauses can only be satis&ed by assignments that satisfy
their only literal. Furthermore, a clause in which at least one literal occurs in both
a2rmative and negative form is always satis&ed.

Let K1 and K2 be two clauses in which a literal λ occurs neither in a2rmative nor
in negative form. Resolution is an inference rule that states that if an assignment w
satis&es both K1 ∪ {λ} and K2 ∪ {¬λ}, then w satis&es K1 ∪ K2 as well. K1 ∪ K2 is
called the resolvent of K1 ∪ {λ} and K2 ∪ {¬λ}.

'e empty clause is formally de&ned as it can be inferred by resolution. It is unsat-
is&able, as it is the resolvent of {X} and {¬X} for any Boolean variable X, i.e. it is
implied by the conjunction of {X} and {¬X}, which is clearly unsatis&able9. Intu-
itively, the empty clause is unsatis&able because it contains no satis&ed literals. In
addition, the empty formula can be de&ned as well. 'e empty formula is satis&able,
as it contains no unsatis&ed clauses.

3.3 SAT solving algorithms

3.3.1 The DPLL-Algorithm

Modern SAT solvers almost exclusively process SAT instances expressed as formulae
in CNF. 'e use of CNF as the preferred normal form has historical reasons. 'e

8In this thesis, literals are denoted by λ, if applicable followed by an index. 'e expression ¬λ,
which is formally not a valid logic expression, is used as an abbreviation to denote ¬X if λ stands
for a variable X (a*rmative occurrence), or to denote X if λ stands for ¬X (negative occurrence).

9Any Boolean formula that contains such a pair of clauses is called self-contradictory and is
unsatis&able.

49

3.3. SAT SOLVING ALGORITHMS

SAT solving algorithm presented by Davis and Putnam in 1960 [60] was intended
to e2ciently determine the satis&ability of a sequence of SAT instances that arose
from the attempt to show the unsatis&ability of a !rst-order predicate logic formula.

Given an in&nite sequence of Boolean formulae ϕ1,ϕ2,ϕ3, . . ., a natural number n
was to be found, for which ψn ∶= ϕ1 ∧ϕ2 ∧⋯∧ϕn would be unsatis&able. Hence, it
was necessary to subsequently determine the satis&ability ofψ1,ψ2, 'e decision
to transform all ϕi into CNF expressions allowed the fast construction of the ψj.
Eachψj is constructed by simply concatenatingψj−1 andϕj and is thus automatically
in CNF.

'e algorithm by Davis and Putnam consists in iteratively modifying the input
formula ϕ by applying one of three rules until either the modi&ed formula becomes
empty, in which case ϕ is satis&able, or until the empty clause is inferred, in which
case ϕ is unsatis&able. 'e three rules are as follows:

▸ Unit propagation — If a unit clause {λ} occurs in the formula, delete all
clauses that contain λ, and delete all occurrences of ¬λ in the remaining
clauses.

▸ Pure literal— If the formula contains a pure literal λ, i.e. if ¬λ occurs in no
clause, delete all clauses that contain λ.

▸ Resolution—Choose two clauses K1 and K2 such that K1 contains a literal λ
and K2 contains ¬λ. 'en, delete K1 and K2 and add the resolvent of K1 and
K2 to the formula.

In 1962, Davis, Logemann and Loveland replaced the resolution rule by a depth-
&rst search with backtracking, thus eliminating the &rst algorithm’s high memory
demand, and also allowing the algorithm to not just prove satis&ability, but to derive
a model as well. 'e resulting algorithm is known as DLL or DPLL-Algorithm [59].

Also algorithms not based on DPLL have been proposed, for instance Bryant’s work
with BDDs10 [33] or Stålmarck’s Proof Procedure [223]. Although these algorithms
perform well on small SAT instances, their further development has stagnated, and

10Boolean functions can be represented using binary decision diagrams (BDD), i.e. directed acyclic
graphs where the nodes represent Boolean variables and the edges represent logic assignments to the
variables at whose node they originate. 'e nodes without outgoing edges are called leafs and stand
for the logic value to which the formula evaluates if the variables are assigned the values speci&ed
by the edges on the path from the root node to the leaf. An important property of reduced BDDs is
that, given a &xed variable ordering, they are a canonical representation of the Boolean function.
However, due to their high memory demand, BDDs are impractical for Boolean functions with a
large number of variables.

50

3. INTRODUCTION TO THE SAT PROBLEM AND TO SAT-BASED ATPG

Algorithm 4

The DPLL-Algorithm

Inputs: Boolean formula ϕ in CNF
Output: returns satis!able if ϕ is satis&able, otherwise unsatis!able
1: dpll(ϕ) {

2: for each unit clause K in ϕ do {

3: ϕ ∶= apply-unit-propagation(ϕ,K)
4: }

5: for each pure literal λ in ϕ do {

6: ϕ ∶= apply-pure-literal-rule(ϕ,λ)
7: }

8: if ϕ is empty then {

9: return satis!able
10: }

11: if ϕ contains the empty clause then {

12: return unsatis!able
13: }

14: X ∶= select-variable(ϕ)
15: if dpll(ϕ ∧ X) returns satis!able then { ▷ decision (X = 1)
16: return satis!able
17: } else {

18: return dpll(ϕ ∧ ¬X) ▷ backtracking
19: }

20: }

DPLL has become the foundation of modern high-performance SAT solvers [151],
including the SAT solvers MiraXT [152] and antom [217], which have been used
by the author of this thesis as SAT solving back-end engines for SAT-based ATPG.

'eDPLL procedure is shown in Algorithm 4. 'e procedure consists of three parts.
'e &rst part (lines 2–7) is characterised by the assignment of necessary values to
certain Boolean variables. In order to satisfy the input formula, pure literals and
unit-clause literals that occur in a2rmative form have to be mapped to logic 1,
while negative literals need to be mapped to logic 0. Since the application of the
unit propagation and pure-literal rules deletes clauses and literals from clauses,
the second part of the DPLL-Algorithm (lines 8–13) checks whether a clause or
the formula itself have become empty, in which case the algorithm terminates.
Otherwise, the third part of the algorithm consisting of the depth-&rst search is
applied. First, the select-variable-procedure (line 14) selects a decision variable
according to some criterion. 'en, the algorithm maps that variable to logic 1 and
recursively calls the dpll-procedure, which will determine the satis&ability of the
derived formula that results from that assignment. If that formula is not satis&able,

51

3.3. SAT SOLVING ALGORITHMS

the chosen variable is set to logic 0 (backtracking) and the satis&ability of the new
derived formula is checked.

If the formula is satis&able, the assignments made during the application of the
unit propagation and pure-literal rules and during the search dictate the found
model. However, the model is not unique and depends on the order in which
decision variables are selected. In addition, a particular selection can result in a
model that is only partially speci&ed, as the clauses deleted by the application of the
unit propagation and pure-literal rules can contain variables that are completely
eliminated from the formula before being selected as decision variables.

One of the most important aspects for the performance of the DPLL-Algorithm is
the strategy by which the decision variables are chosen [151]. In [59], for instance,
a simple heuristic reordering was reported to cause a speed-up by a factor of 10.
'is is still one of the key issues in modern SAT solvers, and a good method for the
selection of decision variables can have a large in5uence on the solver’s performance.

3.3.2 Modern SAT solvers

'e growing complexity of SAT instances derived from problems in various &elds
of engineering resulted in several SAT solvers being introduced towards the end
of the 1990s. Examples include GRASP [163, 165], SATO [258], rel_sat [26] and
WalkSAT [221, 168]. Essentially, these solvers combine heuristic techniques for
local search with simpli&ed implementations of the DPLL-Algorithm that result
in better run-time and memory e2ciency. For instance, while the original DPLL-
Algorithm generates validity proofs (a list of all resolution steps), modern SAT
solvers are purely search-based and do not physically delete unsatis&ed variables in
order to avoid run-time-expensive operations.

'e most signi&cant advancements were contributed by the solver Cha% [176, 259]
which enhanced some of the techniques &rst implemented in GRASP and SATO.
In particular, Cha* introduced the VSIDS strategy (Variable-State Independent
Decaying Sum), which has been proved to be a very good technique for the se-
lection of decision variables. 'e advanced techniques implemented in Cha* are
still employed by SAT solvers of today, though they have been extended and en-
hanced by SAT solvers like BerkMin [103],MiniSat [80, 79, 1],MiraXT [152] and
antom [217].

'e run-time e2ciency ofmodern SAT solvers is characterised by fourmain aspects
that will be discussed inmore detail in the remainder of this section: pre-processing,

52

3. INTRODUCTION TO THE SAT PROBLEM AND TO SAT-BASED ATPG

e2cient Boolean constraint propagation, learning and the use of good decision
strategies.

Pre-processing encompasses several techniques employed to eliminate trivial vari-
ables and clauses from the SAT formula prior to the start of the DPLL-based search
algorithm. 'e necessity of pre-processing arises from the fact that real-world SAT
instances are derived from other problems in engineering. 'e translation of such
problems into SAT formulae needs to be run-time-e2cient and o6en results in
SAT formulae that contain many redundant variables and clauses. Examples of pre-
processing techniques include the application of unit propagation and of the pure-
literal rule, as well as techniques introduced by MiniSat based on subsumption11

and variable elimination through resolution. 'e extent to which pre-processing
is applied varies among di*erent SAT solvers, and the result depends on the com-
plexity of the SAT formula as well. For instance, the pure-literal rule is o6en not
applied as the e*ort spent on identifying pure literals may not be compensated by
the lower complexity of the resulting simpli&ed formula.

Boolean constraint propagation (BCP) is the process of computing all logic values
that are implied by the current partial assignment of variables. BCP is called a6er
the SAT solver has made a decision. Since BCP consumes between 70 and 95% of
the total SAT solving time [151], this is one of the most optimised procedures in
the solver. 'e most important contribution to the e2ciency of BCP was Cha* ’s
watched-literals scheme which exploits the fact that not every clause containing the
decision variable needs to be examined a6er a decision, because no clause that
is already satis&ed or that contains at least two unspeci&ed literals can trigger an
immediate implication of the assignment made to the decision variable. In this
scheme, the solver “watches” only two unspeci&ed literals of each clause. 'en, a
clause needs to be examined only if one of its two watched literals becomes unsat-
is&ed. 'is allows implications to be found quickly while examining only a small
amount of clauses.

Another major step in the advancement of modern SAT solvers was the introduc-
tion of con&ict analysis in Grasp. Con5ict analysis is done using non-chronological
backtracking and recording of con&ict clauses (also known as learning). 'e solver
manages an implication graph that shows what implications are forced by each
clause. When a con5ict is encountered by BCP, the implication graph is used to
&nd the &rst reason for the con5ict, called the !rst unique implication point (&rst
UIP). 'en, backtracking can skip several decision levels and directly jump back to

11A clause K1 subsumes a clause K2 if K1 ⊆ K2. K2 can be removed from the SAT formula, as every
model of K1 satis&es K2 as well.

53

3.3. SAT SOLVING ALGORITHMS

that point. Also, a con5ict clause is resolved from the path between the UIP and
the con5ict and added to the clause database. 'is learnt clause will prevent the
SAT solver from making the same chain of decisions again, thus e*ectively limiting
the search space. However, a large amount of learnt clauses can not only result in
memory explosion, but also considerably slow down BCP. In practice, thousands
of clauses are learnt every second. Hence, while Grasp considers multiple UIPs,
Cha* considers only the &rst UIP in order to limit the number of learnt clauses
and in order to learn shorter clauses which truncate larger parts of the search space.
Also, older con5ict clauses can be deleted a6er some time. BerkMin introduced a
concept where con5ict clauses are learnt based on their activity, i.e. clauses that are
more o6en involved in con5icts are seen as more useful and kept for a longer time.

Finally, decision strategies are strategies by which decision variables are chosen, and
they have a big in5uence on the solver’s performance. In general, decision strategies
try to choose variables whose speci&cation will constraint the SAT problem such
that large parts of the solution space can be disregarded quickly. For instance,
Marques-Silva introduced four strategies based on literal counts: DLCS (Dynamic
Largest Combined Sum), DLIS (Dynamic Largest Individual Sum), RDLCS (Ran-
dom DLCS) and RDLIS (Random DLIS) [162]. 'ese strategies select variables
depending on their number of occurrences in the formula and assign these variables
either random values or a value depending on the di*erence in number between
the variable’s a2rmative and negative occurrences. A drawback of these strategies
is that the literal counts need to be constantly updated. In an attempt to overcome
this di2culty, Cha* introduced the VSIDS (Variable-State Independent Decaying
Sum) strategy that works as follows: 'e number of a2rmative and negative occur-
rences of each literal in the original formula are counted and kept in a sorted list.
'ese counters are incremented only when new learnt clauses are added. A6er the
addition of a given number of new learnt clauses, all counters are divided by two
(decay operations) and the list is resorted. 'en, whenever a variable needs to be
chosen, the variable with the largest a2rmative or negative occurrence is chosen
and assigned the logic value 1 if the a2rmative occurrences outnumber the negative
ones, or 0 if the negative occurrences outnumber the a2rmative ones (as in DLIS).
Aside from the signi&cant run-time reduction that arises from the more e2cient
counting, VSIDS’s periodical halving of counters gives precedence to variables that
occur in recently learnt clauses, i.e. to variables o6en involved in con5icts, which
results in an intuitively more intelligent search algorithm. 'e VSIDS strategy and
its variants are now used by most SAT solvers.

54

3. INTRODUCTION TO THE SAT PROBLEM AND TO SAT-BASED ATPG

3.3.3 Incremental SAT solving

Learning has also been bene&cial for the solution of the incremental Boolean satis-
!ability problem (incremental SAT). 'e formulation and solution of this problem
was motivated by work on SAT-based circuit veri&cation [121] and de&ned in [120]
as the problem of deciding the satis&ability of a CNF formula ϕ ∪ {K} for a clause
K, given ϕ’s satis&ability. Although the problem is NP-complete, it can be solved
more e2ciently once the satis&ability of ϕ has been determined. 'e algorithm pro-
posed in [120] solves the SAT instance ϕ using the DPLL-Algorithm and uses the
information contained in the built search tree to speed up the solution of ϕ ∪ {K}.
'e extended problem of deciding the satis&ability of a series of n related SAT for-
mulae ϕ∪ψ1, . . . ,ϕ∪ψn, where ϕ is a shared pre&x formula, was addressed with the
introduction of the tool SATIRE [255]. SATIRE uses GRASP’s learning mechanism
such that the solving of ϕ∪ψi+1 bene&ts from the con5icts learnt during the solving
of ϕ ∪ ψ1, . . . ,ϕ ∪ ψi, for i = 1, . . . ,n − 1. However, learning is adapted such that
only con5ict clauses pertaining to the pre&x ϕ are kept in the clause database. 'e
improvement of learning techniques as well as better approaches to identify such
con5ict clauses [226, 81] allows modern SAT solvers to solve the incremental SAT
problem e2ciently.

3.3.4 SAT solving with qualitative preferences

In many applications, having a satisfying assignment is not enough. In planning, for
instance, a SAT solution corresponds to merely one plan, while an optimal plan is a
plan that satis&es a set of additional so6 goals. Approaches to extend SAT in order
to specify problems that require more expressive power, while still bene&ting from
the advancements in conventional SAT solving, include MIN-ONE12 and MAX-
SAT13 [50, 230], DISTANCE-SAT14 [21] and pseudo-Boolean approaches [24].

Giunchiglia andMaratea [95, 96] proposed amechanism known as SAT solving with
qualitative preferences, where the SAT solver is given a list of variables that should
preferably be assigned to 1. An advantage of this approach is that it is possible to
extend a SAT solver to handle preferences in an e2cient way [65].

12MIN-ONE is the problem of &nding a model that assigns 1 to a minimum number of variables.
13MAX-SAT is the problem of &nding a model that satis&es a maximum number of clauses.
14DISTANCE-SAT is the problem of &nding a model that assigns at most d variables di*erently

from a given partial assignment that stands for a solution preference.

55

3.3. SAT SOLVING ALGORITHMS

Let ϕ be a Boolean formula, and let L be the set of all literals occurring in ϕ. A
qualitative preference on L is a subset L ⊆ L together with a partial ordering ≺ on L.
Intuitively, L is the set of literals that should be preferably satis&ed, and ≺ determines
the relative importance of those preferences.

Let w1 and w2 be two models of ϕ. Formally, w1 is preferred over w2 under (L,≺)
(written w1 ≺L w2) if the following two conditions hold:

▸ 'ere is at least one literal λ ∈ L that is satis&ed by w1 but not by w2 (written
w1 ≺λ w2).

▸ If there is a literal λ ∈ L with w2 ≺λ w1, then there is a literal λ′ ∈ L with
w1 ≺λ′ w2 and λ′ ≺ λ.

'is mechanism also allows to formally de&ne the optimality of a model. A model
w is an optimal model of ϕ under (L,≺), if w ≺L w′ for every other model w′ of ϕ.

'e following example (taken from [65]) shall illustrate what type of problems can
be expressed using this formalism. 'e CNF formula

{{¬!sh,¬beef },{¬redwine,¬whitewine}}

models the fact that one can have neither both &sh and beef nor both red and white
wine. In order to express that one would like to have &sh and both red and white
wine, but white rather than red wine if having both was not possible, the SAT prob-
lem is extended by preferences ({!sh,whitewine, redwine},whitewine ≺ redwine).
'ese preferences instruct the SAT solver to search for the formula’s only optimal
model (!sh,beef , redwine,whitewine)↦ (1, 0, 0, 1).

56

3. INTRODUCTION TO THE SAT PROBLEM AND TO SAT-BASED ATPG

3.4 The principle of SAT-based ATPG

Boolean di%erence was the &rst method that analysed errors in logic circuits by
converting the original problem into a SAT problem. It was published in 1968 [220].

Given a combinational circuit C with n inputs andm outputs, SAT-based test gen-
eration for a fault f consists of three steps: First, fault f is injected into the original
circuit, which renders a faulty version Cf of the circuit. 'en, the original circuit
and the faulty version are combined to form a miter [29], i.e. a circuit with n in-
puts and one output z, where the i-th input of C and the i-th input of Cf are both
connected to the miter’s i-th input for i = 1, . . . ,n, while the j-th output of C and
the j-th output of Cf are both connected to a new xor gate for j = 1, . . . ,m. 'e
outputs of all these new xor gates are connected to an m-input tree of or gates,
whose output is connected to z. An input pattern can induce the logic value 1 on z
if and only if the responses of C and Cf di*er on at least one output, i.e. if the input
pattern detects f . Hence, &nding a satisfying assignment for the Boolean function
implemented by the miter under the condition that the miter’s output be assigned
to 1 is equivalent to generating a test pattern for fault f , while the nonexistence of a
satisfying assignment proves the fault’s undetectability.

'e second step consists in generating a SAT instance in CNF that represents the
ATPG problem. Every line in the circuit is represented by a Boolean variable. 'en,
the SAT instance is composed of clauses that describe the circuit’s structure, as well
as of a one-literal clause that can only be satis&ed by assignments that satisfy the
Boolean variable that represents the miter’s outputs. 'e clauses that describe the
circuit’s structure are generated usingTseitin transformation [246], a transformation
method that has the advantage that both the number of clauses it generates as well
as its run-time are only linear in the number of gates.

Finally, the last step consists in solving the generated SAT instance using a SAT
solver. If the SAT solver &nds a solution, the test pattern is composed of the values
that have been assigned to the Boolean variables that represent the primary inputs.

Consider, for instance, test generation for the stuck-at-1 fault at line b of the circuit
shown in Figure 12 (a). 'e corresponding miter is shown in Figure 12 (b). Here,
the and gate c′ represents the faulty version of the original circuit. Since the original
circuit has only one output, the tree of or gates is unnecessary and themiter’s output
is given by the xor gate’s output z.

'e functionality of gate c is described by the Boolean expression c↔ (a∧b), which
is an abbreviation of (¬c∨(a∧b))∧(¬(a∧b)∨ c). By the axioms of the Boolean al-
gebra (see Section 2.1), this expression is equivalent to (¬c∨a)∧(¬c∨b)∧(¬a∨¬b∨c),

57

3.4. THE PRINCIPLE OF SAT-BASED ATPG

a

b

stuck-at-�

c

(a) example circuit

a

b
c

c'
�

z

{¬c,�a�},{¬� c,�b�},{¬� a,¬� b,�c�}

{a,¬� c'�},{¬� a,�c'�}

{c,�c',¬� z�},

{c,¬� c',�z�},

{¬c,�c',�z�},

{¬c,¬� c',¬� z�}

(b) corresponding miter

Figure 12. Miter construction and conversion into a SAT formula

which is an expression in CNF that can be written in the form

{{¬c,a},{¬c,b},{¬a,¬b, c}}.

'is type of transformation can also be applied to the xor gate and to the second
and gate c′, which acts like a bu*er due to its second output being a constant logic
1. 'e complete SAT instance is composed of all clauses shown in Figure 12 (b),
together with the clause {z} that requires that any satisfying assignment assign the
miter’s output to 1. 'e only model of this SAT instance is given by

(a,b, c, c′, z)↦ (1, 0, 0, 1, 1).

'e extracted test pattern is composed of the values assigned to a and b, i.e. 10.

Important improvements of this basic problem formulation were published in the
&rst half of the 1990s. In [147, 148], instead of duplicating the whole circuit, only
the sub-circuit that is a*ected by the modelled fault is duplicated in order to reduce
the size of the generated SAT instance. 'is is illustrated in Figure 13. In this
example, only gate h needs to be duplicated (h′), as that is the only gate a*ected by
the fault. 'e sub-circuit that drives gate h’s faulty input requires no duplication, as
that input’s behaviour in the faulty case depends only on the de&nition of the fault.

58

3. INTRODUCTION TO THE SAT PROBLEM AND TO SAT-BASED ATPG

a

b

c

d

e

g

h

stuck-at-�

(a) example circuit

a

b

c

d

e

g

h

h'
�

z

(b) corresponding miter

Figure 13. Larrabee’s miter

'e part of the circuit that drives the second input of gate h (gate g and its input
cone) is also not a*ected by the fault’s presence; hence, it can be shared with h′.

Another improvement that has become a standard in SAT-ATPG was implemented
in the tool TEGUS (Test Generation Using Satis&ability) [237]. 'e employed
technique includes structural information into the SAT instance, which guides the
search of the SAT solver. Inspired by the D-Algorithm, which only tries to drive
propagation through gates in theD-frontier, thismethod explicitlymodelsD-chains,
i.e. paths along which propagation can be driven.

In this approach, all lines in the fault site’s output cone are modelled not only by two
Boolean variables, one that represents the line’s logic value in the fault-free case, and
one that represents the line’s logic value in the faulty case, but also by an additional
Boolean variable that models whether the line would have a D or a D′-value in the
D-Algorithm. Let X1 and X2 be the variables that represent the fault-free and faulty
logic value of a given line. Let X3 be the new variable. 'en, all models of the set
of clauses {{X3,¬X1,X2},{X3,X1,¬X2},{¬X3,X1,X2},{¬X3,¬X1,¬X2}} assign X3

the value 1 if and only if X1 and X2 are assigned di*erent values, i.e. if the modelled
line displays a fault e*ect. Hence, this set of clauses is added to the original SAT

59

3.5. PREVIOUS AND RELATEDWORK

instance. Finally, all new variables along each D-chain are connected by additional
clauses that model the fact that if a gate g belongs to a D-chain (i.e. its D-chain
variable is set to 1), then one of its successors must belong to a D-chain as well in
order to enable the propagation of the fault along a path starting at g.

Although these new variables and clauses increase the size of the SAT-instance, the
run-time required for SAT solving is considerably reduced, as corroborated by the
implementation of these technique in other tools [224, 55]. 'e reason for this is
that a considerable number of backtracks are avoided during the SAT solving due
to the implications that are triggered by the new clauses. In addition, thanks to the
D-chain variables assigned to the primary outputs in the fault site’s output cone, the
miter’s array of xor gates does not need to be modelled explicitly any more.

3.5 Previous and related work

Even a6er the optimisations proposed in [147, 148, 237], which also included the
use of global implications and other techniques derived from structural ATPG, the
e2ciency achieved by algorithms like PODEM and FAN for the average ATPG
instance could not be transferred to early SAT-based approaches, as the SAT solver
is not able to identify Boolean variables that represent primary inputs or head lines
and to make decisions based on them.

In response to this, alternative approaches were developed, which attempted to
enhance the performance of basic structural ATPG by combination with graph-
based algorithms instead of SAT. For instance, in [235], BDDs were used to enhance
justi&cation and propagation. However, the worst-case memory complexity of
BDDs is exponential, which makes them inapplicable to large circuits, and BDD-
based techniques always compute all possible justi&cations even when only one is
needed, which results in over-speci&ed test patterns that cannot be compacted well.

A di*erent approach that attempts to combine Boolean and structural reasoning
in one model utilises implication graphs, which are also partially used in [148].
'is approach was implemented in the tool IGRAINE (Implication-GRaph-bAsed
engINE) [240, 238, 239]. An implication graph is a directed acyclic graph, whose
nodes represent assignments to lines and whose edges represent implications. 'ere
is also a second type of nodes, called ∧-nodes, which are used to represent ternary
relations between line assignments. Graph algorithms are employed to derive in-
direct implications that would remain undetected in purely structural ATPG, and
the method has the advantage that its memory complexity is only linear in the
number of gates. Furthermore, these indirect implications can be used to aid the

60

3. INTRODUCTION TO THE SAT PROBLEM AND TO SAT-BASED ATPG

constraint propagation in SAT solving. [97] proposes the use of new data structures
for a better representation of k-nary relations for arbitrary k-values. 'is technique
was implemented in the tool SPIRIT (Satis&ability Problem Implementation for
Redundancy Identi&cation and Test generation), but the presented data structures
su*er from a large overhead when applied to gates with many inputs.

Recently, the advancement of research on e2cient SAT solving made a6er the year
2000 has given rise to a new generation of purely SAT-based approaches. 'e
most relevant contributions were made by a research group at the University of
Bremen between 2005 and 2010 [69], and by the author of this thesis at the Chair
of Computer Architecture at the University of Freiburg between 2008 and 2012.

'e tool PASSAT [224], which uses the SAT solver MiniSat [80, 1], constitutes the
&rst contribution by the University of Bremen, followed by comparative studies with
NXP’s structural ATPG tool Amsal [5] and a 5ow that combines both tools [242, 67].
[68] presents an extension of PASSAT aimed at increasing the amount of unspeci&ed
bits in the generated patterns, which is an important prerequisite for better static
compaction (Section 2.7.2).

In Bremen, research towards enhancing the run-time e2ciency of SAT-ATPG
developed along two paths. 'e &rst approach uses BDDs to generate smaller
SAT instances and to also reduce the run-time needed for SAT instance genera-
tion [244, 243]. 'e circuit is partitioned into FFRs, and each FFR is represented
using a BDD.'en, the SAT instance that describes the structure of the circuit is
derived from the BDDs, which removes some information redundancy and allows
to reuse already converted sub-formulae. However, this approach is only applicable
to FFRs with a limited amount of gates due to the memory requirements of BDDs.

'e second path followed in Bremen, which involves approaches that utilise learning
and incremental SAT solving [86, 70, 241], lead to better results. For instance,
in [70], a central database is used to cache basic aswell as learnt clauses that represent
the circuit in the fault-free case. Since not all cached clauses are needed in all SAT
instances, these are activated or deactivated dynamically. 'is approach reduces
the time needed for SAT solving as well as the time needed to generate the SAT
instances.

'e contributions made by the author of this thesis constitute the main topic of this
work and are discussed in detail in Chapters 4–9.

61

